Compilation, Evaluation, and Selection of Physical–Chemical Property Data for Organochlorine Pesticides

Li Shen and Frank Wania*

Department of Chemistry and Department of Physical and Environmental Sciences, University of Toronto at Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4

Accurate physical-chemical properties (aqueous solubility S_W , octanol-water partition coefficient K_{OW} , vapor pressure P, Henry's law constant H, octanol-air partition coefficient K_{OA} , octanol solubility S_O) and their temperature dependence are of fundamental importance for interpreting and simulating the environmental fate and transport of organochlorine pesticides (OCPs). A complete set of property data for 14 organochlorine chemicals is derived by evaluating, averaging, and regressing all measured values reported in the literature. The 14 chemicals are hexachlorobenzene (HCB), pentachlorobenzene (PeCB), *cis*-chlordane, *trans*-chlordane, 1,1,1-trichloro-2,2-bis-4-chlorophenyl-ethane (p,p'-DDT) and its metabolites 1,1-dichloro-2,2-bis-4-chlorophenyl-ethene (p,p'-DDD), heptachlor and its metabolite heptachlor epoxide, aldrin, dieldrin, endrin, α -endosulfan, and β -endosulfan. Properties for each individual chemical are adjusted to ensure thermodynamic consistency. That adjustment is sized according to, and is usually smaller than, the measurement uncertainty. Internal energies of phase transfer ΔU could be derived only for HCB and PeCB. The lack of property measurements as a function of temperature for the other chemicals prevents their ΔU values from being derived.

Introduction

Organochlorine pesticides (OCPs) were extensively used in agriculture from the 1950s to the 1970s. Some have been used longer than others, and some, such as lindane and endosulfan, are still in use. The OCPs comprise a diverse group of chemicals but tend to share certain characteristics and structural features. They typically have an aliphatic or aromatic cyclical structure, which is heavily substituted with chlorines. As a result, most OCPs are sparingly soluble and semivolatile. Early measurements detected OCPs in a wide range of environmental compartments, even in remote regions far from the original site of application.^{1,2} Because of their high stability, OCPs can remain unchanged for a long time in the environment. Numerous investigations on OCPs have shown their continued and ubiquitous presence around the world (e.g., refs 3 and 4). Because of this persistence, phase distribution and transport processes tend to play a larger role in controlling their environmental fate and bioaccumulation behavior than for other more readily degradable substances.⁵ Phase distribution and transport processes of pollutants in the environment are often quantified by using key physical-chemical properties such as the aqueous solubility S_W , vapor pressure P, octanol-water partition coefficient K_{OW} , Henry's law constant H, octanol-air partition coefficient K_{OA} , and solubility in octanol S_{O} . Assessment models predicting the fate and behavior of OCPs in the environment require these properties as input parameters.

Several OCPs, including HCB, DDT, chlordane, heptachlor, dieldrin, and endrin, are among the first persistent organic pollutants (POPs) to be subjected to global restrictions in the Stockholm Protocol.⁶ That global treaty also allows for the nomination of additional chemicals if they fulfill a number of criteria related to toxicity, bioaccumulation, persistence, and long-range transport potential. Some of these criteria are based on physical-chemical property thresholds, in particular with respect to $K_{\rm OW}$ and vapor pressure. The protocol furthermore allows for the use of models in defining the attributes of candidate substances (e.g., in terms of the long-range transport potential), and physical-chemical properties are key input parameters for such models. Accurate and precise physical-chemical property data for the OCPs are thus required if they are to serve as benchmarks for defining the combination of properties that render a chemical a POP.

Considering that the OCPs are among the first detected and most widely studied organic pollutants, one might expect that their partitioning properties are well established. Indeed, a large number of studies have reported physical-chemical properties for the OCPs over the last several decades, and handbooks of property data compile long lists of property values.⁷ However, the reported values often conflict with each other and may even range over several orders of magnitude. Using the water solubility and K_{OW} of p,p'-DDT and p,p'-DDE as an example, Pontolillo and Eganhouse⁸ painstakingly documented reporting errors, multilevel referencing, and a common lack of information on precision as well as other problems in both original literature sources and property compilations, which are partly responsible for the intimidating degree of inconsistency. Another reason for the problems in identifying the true value of the partitioning properties of OCPs is the difficulty in reliably measuring S_W , H, and K_{OW} of sparingly soluble substances and P, H, and K_{OA} of semivolatile substances.8

Beyer et al.⁹ suggested that the solution to this dilemma lies in taking advantage of the thermodynamic relationships between the physical-chemical descriptors of an organic chemical. The accuracy of a particular property

^{*} Corresponding author. E-mail: frank.wania@utoronto.ca.

48.9647.23

27

l'able 1. Reported and	d Selected Physical–Chemica	Il Properties for Hexachlorol	benzene (HCF	3)	
common name	hexachlorobenzene	$t_{\rm M}/^{\circ}{ m C}$	228.0	23	
CAS registry no.	118-74-1		229.7	24	
formula	C_6Cl_6		228.9	25	_
$MW/g\cdot mol^{-1}$	284.8		228.7	26	
-			228.0	22	CI CI
			231.9	27	
		$\Delta_{ m fus}S/J{f \cdot}K^{-1}{f \cdot}mol^{-1}$	44.77	23	
			50.16	25	
			49.73	26	G
			48.96	22	

Table 1. Repor	ted and Selected	Physical–Chemical	Properties for	Hexachloro	benzene (HCB)

				Vapor Pressure		
t/°C	Ps/Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method	ref	note
-15	0.0000022	0.00053	-3.28	generator column - GC	28	
-5	0.000024	0.0037	-2.43			
10	0.00026	0.023	-1.63			
25	0.0031	0.16	-0.78			
40	0.012	0.40	-0.40		~~	
-30	0.0000026	0.0012	-2.91	gas saturation - GC	29	
-20	0.0000073	0.0022	-2.66			
-10	0.000032	0.0062	-2.20			
0	0.00010	0.013	-1.88			
10	0.00036	0.032	-1.50			
30	0.0011	0.000	-0.83			
15	0.00053	0.13	-1.41	gas saturation - GC	30	
25	0.0025	0.13	-0.87	gub Suburunom GO	00	
35	0.0085	0.33	-0.48			
45	0.028	0.80	-0.10			
41.05	0.021	0.66	-0.18	gas saturation - GC	31	
50.16	0.055	1.4	0.13	0		
60.3	0.17	3.1	0.49			
70.3	0.45	6.6	0.82			
80.3	1.2	13	1.12			
90.4	2.8	25	1.40			
100.25	6.3	46	1.67			
10	0.00080	0.071	-1.15	gas saturation - GC	32	
20	0.0026	0.16	-0.79			
30	0.0081	0.36	-0.44			
40	0.023	0.76	-0.12			
00 10	0.001	1.0	0.18	wanay programa balance	20	
20	0.00028	0.025	-1.01 -1.16	vapor pressure balance	34	
30	0.0011	0.003	-0.76			
40	0.0035	0.10	-0.37			
50	0.039	0.97	-0.01			
20	0.00046	0.029	-1.54	relative loss rate	33	
20	0.00074	0.046	-1.34	evaporation rate	34	calcd from the reported equation
40	0.0095	0.32	-0.50	-		$\log(P_{\rm S}/{\rm Torr}) = -5152.1/(T/{\rm K}) + 12.237$
60	0.089	1.7	0.23			(20 to 60) °C
96	3.4	28	1.44	Rodebush manometer	24	calcd from the reported equation
105	7.0	47	1.67			$\log(P_{\rm S}/\rm{mmHg}) = -4793.6/(T/\rm{K}) + 11.4$
115	15	82	1.91			(96 to 124) °C
124	28	131	2.12		~~	
114.4	133	741	2.87		35	
149.3	667	1993	3.30			
100.4	1333	3049	3.48 2.66			
100.7	2000 5222	4010	0.00 2.95			
200	7999	9016	3.65			
235 5	1555	13332	4 12			
258.5		26664	4.43			
283.5		53329	4.73			
309.4		101325	5.01			
-30		0.00024	-3.62	GC - retention time	36	calcd from the reported equation
0		0.0099	-2.00			$\log(P_{\rm L}/{\rm Pa}) = -3582/(T/{\rm K}) + 11.11$
25		0.12	-0.90			
50		1.1	0.03			
75		6.6	0.82			
100		32	1.51			
125		130	2.11			
LDV at 25 °C		0.14	-0.85	linear regression		$\log(P_{\rm L}/{\rm Pa}) = -3530/(T/{\rm K}) + 10.97$
FAV at 25 °C		0.094	-1.03			$R^2 = 0.974$

7 _

Table 1. (Continued)

			Aqı	ieous Solubility					
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m$	-3 log	$g(S_{ m WL}/ m mol\cdot m^{-3})$		method		ref	note
5	0.0000077	0.00082		-3.08	generator	column - Go	C	37	
15	0.000012	0.00091		-3.04	8		-		
25	0.000019	0.0010		-3.00					
35	0.000030	0.0012		-2.94					
45	0.000049	0.0014		-2.85					
25	0.000018	0.00093		-3.03	generator	column - G0	C	38	
25	0.000017	0.00087		-3.06	generator (column - Go	3	39	
20	0.000019	0.0012		-2.93	generator	column - Go	C	40	
25	0.000017	0.00092		-3.04	shake flash	s - UV		41	
23	0.000030	0.0017		-2.77	shake flash	s - UV		42	
22	0.000014	0.00081		-3.09	shake flash	x - GC		43	
23	0.000010	0.0027		-2.57	shake flash			44	
23	0.000018	0.0010		-2.99	SDME CC	к - прес		40	
25	0.000018	0.00093		-2.05	radioassay	r		40	
23 24	0.000021	0.0011		-1.72	nethelome	tric		48	
24	0.000000	0.019		-2.54	RP-HPLC	0110		40	
23	0.0045	0.00090		-3.05	101 111 110			49	
23	0.00048	0.000096		-4.02				49	
LDV at 25 °C	0100010	0.00096		-3.02	log mean o	f the values	s at 25 °C	10	
FAV at 25 °C		0.0014		-2.84	-0				
			Henr	y's Law Constant					
t/°C	<i>H</i> /Pa·m ³ ·mol ⁻¹	KAW	log KAW		method		ref	note	•
14.8	94	0 0099	-2.01	gas strinning	GC		50	11000	
20.1	30	0.0035	-1.91	gas surpping -	uu		50		
20.1	47	0.012	-1.72						
24.2	53	0.021	-1.67						
34.8	88	0.034	-1.46						
50.5	217	0.081	-1.09						
20	49	0.020	-1.70	gas stripping -	GC		51		
25	172	0.069	-1.16	gas stripping -	GC		19		
23	133	0.054	-1.27	gas stripping -	GC		20		
23	172	0.070	-1.15					not used, se	eawater
25	24	0.0096	-2.02	thermodynami	c method		52		
26	26	0.011	-1.98	EPICS - GC			53		
46	30	0.011	-1.95						
LDV at 25 °C	52 65	0.021	-1.68	log mean of the	values at (20	to 26) °C			
FAV at 25 C	05	0.020	-1.56						
			O Part	ctanol–Water					
t/°C	Kow	log Kow	1 411	method		ref		note	
5	5.5×10^5	5 74	sha	ke flask - GC		54		11000	
15	4.0×10^{5}	5.6	5110	ike llask - OO		54			
25	2.9×10^{5}	5.46							
35	2.0×10^{5}	5.3							
45	$1.5 imes10^5$	5.17							
25	$3.2 imes10^5$	5.5	sha	ke flask - GC		55			
25	$3.2 imes10^5$	5.5	sha	ke flask - GC		56			
25	$2.1 imes10^5$	5.31	sha	ke flask - GC		57			
25	$5.4 imes10^5$	5.73	sha	ke flask - GC		58			
25	$4.0 imes10^5$	5.6	slov	w stirring - GC		59			
25	$3.2 imes10^5$	5.5	slov	w stirring - GC	~	60			
25	$3.0 imes 10^{5}$	5.47	gen	erator column - G	C	39		1	•, ,•
25	3.5×10^{5}	5.55	dia	lysis - HPLC		61	without	ultrasonic ag	itation
25	4.0×10^{5}	5.6 5.0		•••••		00	with ulti	asonic agita	10n
23	$1.6 \times 10^{\circ}$	5.2 5.2	rad	loactive analysis		62			
23 99	2.0×10^{5}	ರಿ.ರ ೯	GL	the fleet of the fleet		60			
22	1.0×10^{5}	0 6 97	sha Tu	HOLC		03 69			
20 25	$1.9 \times 10^{\circ}$	0.27	גרא מס			03 64			
20 25	$0.0 \times 10^{\circ}$ 9.6×10^{7}	0.10 7.19	גרא מס	HDI C		04 65			
20 95	2.0 × 10' 8 2 × 106	6.02	גרא מס	HDI C		00 66			
20 95	$0.3 \times 10^{\circ}$ 7 0 $\times 10^{5}$	0.92 5 0	πP σσ			50	100%	tor	
20 25	$1.3 \times 10^{\circ}$ $1.0 \sim 106$	0.9 6.6	пP	-111 LU		09	100% W8	hand $\pm 150^{\circ}$	water
25 25	$4.0 \times 10^{\circ}$ 3.0 $\sim 10^{6}$	6.47	D	HPLC		67	oo % met	$\pm 100 \pm 10\%$	water
25	2.6×10^{6}	6 41	RP	HPLC		68			
23	1.7×10^{5}	5.23	RP	HPLC		69			
23	3.2×10^{6}	6.51	RP	HPLC		49			
23	1.5×10^{6}	6.18	111			10			
LDV at 25 °C	$3.3 imes 10^5$	5.52	log	mean of the value	es at 25 °C				
FAV at 25 °C	$4.3 imes10^5$	5.64	8						

Table 1. (Continued)

25

15

				Octanol- Partition Co	–Air Defficient		
t/°C	С	K_{OA}	$\log K_{\mathrm{OA}}$	met	thod	ref	note
5		$1.2 imes 10^8$	8.09	generator column -	GC	12	calcd from the reported equation
10		$8.0 imes10^7$	7.90				$\log K_{\rm OA} = 2914/(T/{\rm K}) - 2.39$
15		$5.3 imes10^7$	7.72				(5 to 25) °C
20		$3.6 imes10^7$	7.55				
25		$2.4 imes10^7$	7.38				
-10		$4.2 imes10^8$	8.63	generator column -	- GC	13	calcd from the reported equation
0		$1.2 imes10^8$	8.08				$\log K_{\rm OA} = 3928/(T/{\rm K}) - 6.3$
10		$3.7 imes10^7$	7.57				(-10 to 20) °C
20		$1.3 imes10^7$	7.10				not used
LDV at	$25 \ ^{\circ}\mathrm{C}$	$2.4 imes10^7$	7.38	directly taken from	n the value at 25 °C		
FAV at	$25 \ ^{\circ}\mathrm{C}$	$1.6 imes10^7$	7.21	-			
				Octanol So	lubility		
t/°C	$S_{\rm OS}$ /n	nol∙m ^{−3}	$S_{ m OL}/ m mol\cdot m^{-3}$	$\log(S_{\mathrm{OL}}/\mathrm{mol}\cdot\mathrm{m}^{-3})$	method	ref	note
4		8.5	942	2.97	slow stirring - GC	18	not used for the adjustment
12	1	1	884	2.95	8		0
20	1	4	861	2.94			

2.90

shake flask - GC

value can be evaluated by relating it to the values of other associated partitioning properties. They proposed a method to adjust literature-derived property values for one chemical such that they conform to the thermodynamic relationships linking them. Li et al.¹⁰ further complemented that approach by developing a rigorous and transparent procedure for compiling and evaluating measured data from the literature, selecting literature-derived values through averaging or linear regression and making estimates of the uncertainty of these values. These uncertainty estimates determine the extent of relative adjustment applied in the adjustment algorithm. The procedure was applied to 16 PCB congeners, and the resulting set of data shows consistency not only among the various partitioning properties for one congener but also for one property across various congeners.¹⁰ Recently, an internally consistent set of physical-chemical property data for α -, β -, and γ -hexachlorocyclohexane (HCH) was derived on the basis of all experimentally obtained values reported for these isomers in the literature.¹¹ The final adjusted values indicated that the partitioning behavior of α - and γ -HCH differs from that of β -HCH, which may result in substantially different environmental pathways for β -HCH.

800

The present work's objective was to use this same approach to derive an internally consistent property data set for 14 additonal OCPs, which makes use of all available measured data. These OCPs are HCB, PeCB, *cis*-chlordane, *trans*-chlordane, *p,p'*-DDT and its metabolites *p,p'*-DDE and *p,p'*-DDD, and heptachlor and its metabolites heptachlor epoxide, aldrin, dieldrin, endrin, α -endosulfan, and β -endosulfan. Property measurements for several other OCPs, namely, nonachlor, methoxychlor, and mirex, were found to be too limited to allow this procedure to be applied. Beyer et al.⁹ already adjusted for consistency property values for six of the OCPs (*p,p'*-DDT, *p,p'*-DDE, *trans*chlordane, *cis*-chlordane, PeCB, HCB) but had used starting values, which were not as rigorously selected as in the current study.

Methods

The principles and steps involved in the evaluation, selection, and adjustment procedure have been described previously^{9,10} and will not be repeated here in detail. Briefly, the steps are as follows.

Deriving Property Values from Measurements Reported in the Literature. The Chemical Abstracts Service Source Index (CASSI) and other databases⁷ are used to obtain and identify all of the published literature on measured physical-chemical properties for the chemicals of interest. Despite our efforts at comprehensiveness, it is likely that additional data sources exist that escaped our attention. To avoid multilevel referencing and reporting errors, only original data sources are considered; that is, no quoted values are included.⁸ Although we may use handbooks to identify property values, we always consult the original sources to determine if the information is correct and available in the original publications. Values that refer to the same set of experiments, differ substantially from a cluster of other reported values, or are highly inconsistent with respect to the other property values for the same chemical are not used in the derivation of literature-derived values (LDVs). Data measured indirectly, such as those derived from chromatographic retention times, are included only if there are no directly measured data or the directly measured data are inconsistent with the other property data. Theoretically estimated values are excluded.

70

The measured data are converted to appropriate and identical units and compiled in spreadsheets. If no exact experimental temperature is provided, then a temperature of 23 °C is assumed to apply. If the data are reported as a linear equation, then discrete values listed in tables are calculated for four or five temperatures that are either experimental temperatures indicated in the reference or temperatures in the environmentally relevant range. In some cases, values at low or high temperatures are calculated from an equation if it aids in the comparison with other measurements. Because the OCPs are solids at environmental temperatures, experimentally determined properties for the solid state were converted to those of the supercooled liquid. This is discussed in more detail below.

If measured values for a property exist at several temperatures, then a linear regression equation between the logarithm of all noneliminated data and the reciprocal absolute temperature is derived. The LDVs for the property at 25 °C are obtained from the regression equation, and the LDVs for the corresponding internal energy of phase transfer are calculated from the slope of the regression line. If measurements had been performed within only a fairly small temperature range (e.g., (20 to 25) °C) and measured data at 25 °C are close to each other, then the LDV at 25 °C is the logarithmic mean of the noneliminated values at

Table 2. Report	ed and Selecto	ed Physical–C	Chemical Prop	perties	for Pentachlo	orobenzene	e (PeCB)	
common name CAS registry r	e pent no. 608-	tachlorobenzene -93-5	•	$t_{\rm M}/^{\circ}$ $\Delta_{\rm fus}$	\mathbb{C} S/J·K ⁻¹ ·mol ⁻¹	84.6 57.7	$\begin{array}{c} 23\\ 4 & 23\end{array}$	
formula MW/g∙mol ^{−1}	$C_{6}H$ 250.	ICl ₅ .3						
			Ver	non Duca				
			vaj	por Pres	sure			
t/°C	P _S /Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$		method	ref		note
30	0.55	1.9	0.28			71		
40	1.8	4.7	0.68					
50	5.3	11	1.05					
60	15	25	1.39			70		
30.3 40.2	0.39	1.4	0.13	press	sure gauge	72		
40.3 50.9	1.2	5.1 67	0.49					
60.2	8.5	14	1.15					
70.1	20	27	1.44					
80.0	47	52	1.71					
98.7		168	2.22					
108.7		285	2.45					
118.8		471	2.67					
128.9		756	2.88					
138.9		1189	3.08					
149.0		2731	3.20					
169.1		4010	3.60					
179.1		5751	3.76					
98.6		133	2.12			35		
129.7		667	2.82					
144.3		1333	3.12					
160		2666	3.43					
178.5		5333	3.73					
190.1		13339	3.90 1 19					
205.5 227		26664	4.12					
251.6		53329	4.73					
276		101325	5.01					
20	0.055	0.25	-0.60	relat	ive loss rate	33	outlier	
LDV at 25 °C		1.2	0.07	linea	r regression		$\log(P_{\rm L}/{\rm Pa}) =$	-3220/(T/K) + 10.87
FAV at 25 °C		1.0	0.01	G 1	1 • 1• ,		$R^2 = 0.997$	
	0		Aque	eous Sol	ubility			
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$\log(S_{\rm WL}/{\rm m})$	ol∙m ⁻³)		method	ref	note
25	0.0033	0.013	-1.8	88	generator co	olumn - GC	39	
22	0.00072	0.0031	-2.5	60	generator co	olumn - GC	73	
5	0.00058	0.0042	-2.3	57	generator co	olumn - GC	37	
15	0.0010	0.0054	-2.2	7				
20 35	0.0017	0.0067	-2.1	.1				
45	0.0025	0.0015	-2.0	9				
25	0.0018	0.0071	-2.1	5	shake flask	- GC	37	
25	0.0035	0.014	-1.8	6	shake flask	- GC/MS	74	
25	0.0022	0.0090	-2.0	5	shake flask	- UV	41	
25	0.0053	0.021	-1.6	57	shake flask	- LSC	75	
22	0.0010	0.0046	-2.3	64 0	shake flask	- GC	43	
23	0.00088	0.0066	-2.1	.ð 19	shake flask	- GC HPLC	44	
23	0.00000	0.0037	-1.2	3	RP-HPLC	- 111 LC	40	not used indirect
23	0.013	0.053	-1.2	27			10	not usea, mancet
23	0.00035	0.0015	-2.8	32				
LDV at 25 °C		0.011	-1.9	6	log mean of	the values a	at $25 \ ^{\circ}\mathrm{C}$	
FAV at 25 °C		0.014	-1.8	85				
			Henry	's Law C	onstant			
t/°C	<i>H</i> /Pa∙m³∙m	K_{AW}	$\log K_{\rm AW}$	V	method	ref		note
20	72	0.030	-1.53	Ę	gas stripping	51		
14.8	37	0.016	6 -1.81	Ę	gas stripping	50		
20.1	49	0.020	-1.69					
22.1	68	0.028						
24.2 34 8	67 194	0.027	-1.57					
54.0 50.5	276	0.040	-0.99					
LDV at 25 °C	74	0.030	-1.52	1	inear regression	n	$\log K_{\rm AW}$ =	= -2026/(T/K) + 5.27
TAT LOF OG	79	0.029	-154		U		$R^{2} = 0.95$	57

Table 2. (Continued)

		Partit	ion Coefficient		
t/°C	$K_{ m OW}$	$\log K_{ m OW}$	method	ref	note
5	$1.6 imes10^5$	5.20	shake flask - GC	54	
15	$1.1 imes 10^5$	5.06			
25	$8.7 imes10^4$	4.94			
35	$6.2 imes10^4$	4.79			
45	$4.6 imes10^4$	4.66			
25	$1.5 imes10^5$	5.17	shake flask - GC	57	
25	$1.6 imes10^5$	5.20	shake flask - GC	56	
22	$1.6 imes10^5$	5.20	shake flask - GC	44	
25	$8.7 imes10^4$	4.94	shake flask - HPLC	64	
23	$8.7 imes10^4$	4.94	shake flask - LSC	75	
25	$1.1 imes10^5$	5.03	generator column - GC	39	
25	$1.5 imes10^5$	5.18	slow stirring - GC	58	
22	$7.6 imes10^4$	4.88	shake flask - GC	63	
25	$1.5 imes10^5$	5.18	RP-HPLC	64	
23	$1.1 imes10^5$	5.06	RP-HPLC	76	
23	$4.9 imes10^5$	5.69	RP-HPLC	77	
23	$3.0 imes10^5$	5.47	RP-HPLC	78	
18	$1.3 imes10^6$	6.12	RP-HPLC	66	
23	$5.5 imes10^5$	5.74	RP-HPLC	49	
LDV at 25 °C	$1.2 imes10^5$	5.08	log mean of the values at 25 $^{\circ}\mathrm{C}$		
FAV at 25 °C	$1.6 imes10^5$	5.19			

Octopol-Wotor

Octanol-Air Partition Coefficient

t/°C	K_{OA}	$\log K_{\mathrm{OA}}$	method	ref	note
-10	$8.8 imes10^7$	7.94	generator column - GC	13	calcd from the reported equation
0	$2.7 imes10^7$	7.43			$\log K_{\rm OA} = 3722/(T/{\rm K}) - 6.3$
5	$1.5 imes10^7$	7.18			(-10 to 20) °C
10	$8.8 imes10^6$	6.94			
20	$3.1 imes10^6$	6.50			
25	$1.9 imes10^6$	6.28			extrapolated
25	$3.3 imes10^7$	7.52	GC - retention time		Li, unpublished
					indirect, used anyhow
LDV at 25 °C	$8.0 imes10^6$	6.90	log mean of the values at 25 °C		, ,
FAV at 25 °C	$5.4 imes10^6$	6.73	0		
Octanol Solubility					not found

Octanol Solubility

25 °C. If there is an insufficient number of values at 25 °C or if data at 25 $^{\circ}\mathrm{C}$ are scattered, then the LDV at 25 $^{\circ}\mathrm{C}$ has to be derived using the logarithmic mean of the noneliminated values at (20 to 25) °C, assuming that in such cases the temperature dependence is minor compared to the uncertainty of the measurements. The arithmetic mean would give undue weight to higher values.

If property values for selected chemicals had been measured by only a single study, then the LDVs for the property and the corresponding internal energy of phase transfer are taken directly from the relevant studies. If there are multiple data sets from the same author or research group, then the latest data take precedence. For example, most of the LDVs for K_{OA} , except those for heptachlor epoxide and β -endosulfan, are taken from the study by Shoeib and Harner.¹² Harner and Mackay¹³ had previously reported K_{OA} values for HCB and p,p'-DDT. The more recent values are higher and more consistent with other properties and are thus considered to be more reliable and served as LDVs.

Assigning Uncertainty Estimates to the Literature-Derived Values. For each LDV value of the six evaluated properties $P_{\rm L}$, $S_{\rm WL}$, $K_{\rm OW}$, H or $K_{\rm AW}$, $K_{\rm OA}$, and $S_{\rm OL}$ of a particular chemical, a relative uncertainty estimate, $u_{\rm X}$, is required to avoid the undue adjustment of a well-established property value to conform to a poorly characterized one.⁹ To minimize ambiguity in deciding on the value of $u_{\rm X}$ for a property, a $u_{\rm X}$ value between 1 and 5 is assigned by comparing the size of the database, the technique employed in a measurement, the deviations between different literature data, and the general reliability of data reported by a particular research group. For example, a relatively large $u_{\rm X}$, indicating high uncertainty, is assigned to properties for which few or no directly measured data exist (e.g., K_{AW} for most selected chemicals), whereas properties that had been measured directly several times with accepted techniques yielding comparable values would deserve a low $u_{\rm X}$ (e.g., $P_{\rm L}$ for HCB).

Adjusting the Literature-Derived Values to Conform to Thermodynamic Constraints. The LDVs were adjusted on the basis of their assigned uncertainties using the algorithm by Beyer et al.⁹ This technique adjusts a set of physical-chemical property values in such a way that they conform to thermodynamic constraints yet deviate as little as possible from the original values. The adjusted values are referred to as final adjusted values (FAVs). Missing property values are calculated at the same time. For the selected chemicals, $K_{\rm OW}$ is assumed to be equal to $S_{\rm OL}/S_{\rm WL}$ on the basis of the belief that for the OCPs the uncertainty caused by the effect of the mutual solubility of octanol and water on $K_{\rm OW}$ is less than that of experimentally measured data reported in the literature. Bever et al.⁹ provided a detailed account of the thermodynamic basis of the adjustment procedure and the equations on which it is based. A computer program with the algorithm is available from www.usf.uos.de/projects/elpos/download/ adjust.en.html.

Conversion of Properties of the Solid to Those of the Supercooled Liquid. As mentioned above, the vapor pressure and solubility values reported for the solid phase

Table 3.	Reported and	Selected	Physical-	-Chemical	Properties	for p.r.	o'-DDT
	recover of the second	Nore could		0		p.p	

com CAS forn MW	mon name S registry no nula 7/g·mol ⁻¹	$\begin{array}{c} p_{,p}'\text{-D} \\ \text{50-29-} \\ C_{14}\text{H}_{9'} \\ 354.5 \end{array}$	DT 3 Cl ₅	$t_{ m M}$	°℃	$ \begin{array}{r} 108.7 \\ 109.8 \\ 108.9 \\ 111.7 \\ 71.2 \\ 68.8 \end{array} $		$\begin{array}{c} 79\\ 27\\ 22\\ 16\\ 36\\ 27\end{array}$
								22 16
					Vapor Pressure	1011		
t/	/°C	Ps/Pa	P _L /Pa	log(PL/Pa)) method		ref	note
20		0.000029	0.00042	-3.38	gas saturation -	HPLC	80	
$\frac{25}{30}$		0.000057 0.00012	0.00067	-3.17 -2.92				
40		0.00053	0.0037	-2.43				
50 60		0.0020	0.0099	-2.00				
60 70		0.0064	0.023	-1.63 -1.26				
80		0.060	0.12	-0.90				
20		0.000020	0.00029	-3.54	gas saturation -	\mathbf{GC}	81	
30		0.000097	0.00095	-3.02				
40 0		0.00000050	0.000016	-2.52 -4.79	gas saturation -	GC	29	
10		0.0000025	0.000054	-4.27	8			
20		0.000017	0.00024	-3.61				
30 40		0.000081	0.00079	-3.10 -2.58				
50.1		0.0020	0.0099	-2.00	gas saturation -	GC	82	
60.1		0.0071	0.026	-1.59	-			
80.4		0.078	0.16	-0.80				
$\frac{88.8}{90.2}$		0.20	0.33	-0.48 -0.44				
0		0.00000059	0.000019	-4.72	effusion manome	eter	83	
10		0.0000036	0.000076	-4.12				
20 30		0.000020	0.00028	-3.55				
40		0.00043	0.0029	-2.53				
50		0.0018	0.0088	-2.05				
60 70		0.0067	0.024	-1.61				
70 80		0.023	0.063	-1.20 -0.81				
90		0.22	0.36	-0.44				
100		0.64	0.80	-0.10				
20 20		0.000043	0.00061	-3.21	relative loss rate	•	33 84	
$\frac{20}{20}$		0.000017	0.00047	-3.61	gas saturation -	LSC	85	outlier
50		0.000063	0.00031	-3.51	0			
100		0.000090	0.00011	-3.95				
0 25			0.000016	-4.79 -3.30	GC - retention ti	me	36	calcd from the reported equation $\log(P_T/P_a) = -4865/(T/K) + 13.02$
50			0.0092	-2.03				105(1)110) 1000/(1/11) 10:02
75			0.11	-0.95				
$\frac{100}{25}$			0.96	-0.02	CC retention ti	mo	96	PD 1 column
$\frac{25}{25}$			0.00035 0.00047	-3.33	de - retention ti	me	00	Apolane-87 column
LDV a	at 25 °C		0.00056	-3.25	linear regression	L		$log(P_{\rm L}/{\rm Pa}) = -4666/(T/{\rm K}) + 12.40$
FAV a	at 25 °C		0.00048	-3.32				$R^2 = 0.995$
±/0C	C /mal.m	-3 C /mal.m-	-3 $\log(6)$	A	queous Solubility		nof	noto
<i>u</i> c	Sws/mol·m	^o S _{WL} /mol·m	* 10g(.S	WI/mol·m ⁽⁰⁾	method		rei	note
25 23	0.000014	0.00017		-3.77 -3.95	generator column - C shake flask - UV	πU	46 42	
$\frac{10}{24}$	0.000015	0.00019		-3.73	shake flask - GC		87	
20	0.00011	0.0016		-2.79	shake flask - HPLC		88	
24 25	0.000015	0.00014		-3.86 -3.74	shake flask - nephelo	ometry	48 55	
$\frac{25}{15}$	0.000015	0.00083		-3.08	shake flask - GC		89	particle size, 5 μ m
25	0.000071	0.00083		-3.08				-
35 45	0.00010	0.00086		-3.07				
40 15	0.00013	0.00074 0.00012		-3.13 -3.91	shake flask - GC		89	not used, small particle size, 0.05 µm
25	0.000017	0.00020		-3.70	shund hush GO		00	100 about share particle size, 0.00μ m
35	0.000037	0.00030		-3.52				
45 15	0.000078	0.00045		-3.34 -4.31	shake flask - GC		89	not used, small particle size, 0.01 um
		0.000010						

Table 3. (Continued)

				Aqueous S	Solubility				
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol{\cdot}m^{-3}$	$\log(S_{\rm WL}/n$	nol•m ⁻³)	method	1		ref	note
25	0.0000048	0.000056	-4.	25					
35	0.0000073	0.000060	-4.	22					
45	0.000011	0.000064	-4.	19					
25	0.0000048	0.000056	-4.	25	ultracentrigfugation -	GC		90	outlier
25	0.000085	0.00100	-3.	00	RP-HPLC			49	
2	0.0059	0.00016	-3.	80	shake flask - radiomet	ric		91	no isomer specified
25	0.037	0.00044	-3.	36					no isomer specified
37.0 92	0.040	0.00035	-3. -4	40 70	shake flask CC			02	no isomer specified
25	0.0010	0.000020	-4. -4	28	shake flask - USC			92	no isomer specified
25	0.0043	0.000027	-4	57	generator column			94	no isomer specified
25	0.020	0.00023	-3.	63	RP-HPLC			94	no isomer specified
LDV at 25 °C		0.00027	-3.	56	log mean of the values	at (20	to 25) °C		
FAV at 25 $^{\circ}\mathrm{C}$		0.00042	-3.	37	-				
			н	enry's La	w Constant				
	<i>U/</i> D 3 1=	1 17	1 <i>V</i>	lemy s La	weblistant				
<i>t/°</i> C	H/Pa•m ³ •mol	KAW	$\log K_{\rm AW}$		method		ref		note
25	1.3	0.00052	-3.28				84		
25	0.84	0.00034	-3.47	thermod	lynamic method		52		
22 - 24	0.86	0.00035	-3.46	wetted-	wall column		95	not at	25 °C, used anyhow
23	1.3	0.00052	-3.28	fog char	nber (drain)				
23	1.3	0.00054	-3.27	fog char	nber (cyclone)				
LDV at 25 °C	1.1	0.00043	-3.37	log mea	n of the values at (23 to	25) °C			
FAV at 25 °C	1.1	0.00043	-3.37						
]	Octanol Partition (–Water Coefficient				
t/°C	Kow	$\log K_{\rm OW}$			method		ref		note
25	8.7×10^{5}	5 94	sh	ake flask	- GC		88		
25	2.3×10^{6}	6.36	sh	ake flask	- GC		55		
25	8.2×10^{6}	6.91	slo	ow stirring	r - GC		58		
23	$1.6 imes 10^6$	6.20	slo	ow stirring	g - GC		59	avera	ge of four replicates
23	$2.0 imes10^6$	6.31	slo	ow stirring	g - GC				
23	$1.7 imes10^6$	6.24	slo	ow stirring	g - GC		60		
25	$1.0 imes10^6$	6.00	SI	PMD - GC			46		
25	$4.0 imes10^5$	5.60	RI	P-HPLC			65		
18	$4.3 imes10^5$	5.63	RI	P-HPLC			66		
25	$2.4 imes10^6$	6.38	RI	P-HPLC			76		
17	$1.3 imes10^{5}$	5.13	RI	P-HPLC			96		
23	3.2×10^{5}	5.50	RI	P-HPLC			97		
23	1.6×10^{6}	6.21	KI DI	P-HPLC			68 67		
23	2.8×10^{5}	0.44 5 5 9					07		
23	$3.3 \times 10^{\circ}$	0.02 5.50					98 85		
LDV at 25 °C	3.9×10^{6} 1.9 $\times 10^{6}$	6.28	lo	r mean of	the values at (23 to 25)	°C	00		
FAV at 25 °C	2.5×10^{6}	6.39	108	5 mean or	une values at (25 to 26)	U			
				0.4	1 4.				
]	Octano Partition (DI-Air Coefficient				
t∕°C	$K_{ m OA}$	$\log K_{ m OA}$		1	method	ref			note
5	$8.3 imes10^{10}$	10.92	ge	nerator co	lumn - GC	12	calcd	from th	e reported equation
15	$2.2 imes10^{10}$	10.34					$\log K_{\rm C}$	$_{\rm DA} = 460$	03/(T/K) - 5.63
25	$6.4 imes10^9$	9.81					(5 to 4	5) °C	
35	2.0×10^{9}	9.31							
45	$6.9 \times 10^{\circ}$	8.84			1 00	10		с (1	
-10	0.7×10^{11}	11.83	ge	nerator co	iumn - GC	13	calcd $1_{a} = V$	rom the	e reported equation $A_{\mu}(T/T) = 2.9$
U 10	1.9×10^{11}	11.28					$10g K_0$	$_{\rm A} = 395$	$\frac{34}{1/K} = 3.2$
20	0.0×10^{10} 1 0 $\sim 10^{10}$	10.70					(-10 t	u ∠0) (0 ad	
LDV at 25 °C	6.4×10^{9}	9.81	dia	rectly take	the value at 25 °C		not us	ocu	
FAV at 25 °C	$5.4 imes10^9$	9.73	un	song ound					
				Octanol S	Solubility				
$t/^{\circ}\mathrm{C}$ $S_{\mathrm{OS}}/2$	$mol \cdot m^{-3}$ S_0	_{DL} ∕mol∙m ^{−3}	$\log(S_{\rm OL}/m$	nol•m ⁻³)	method	r	ef		note
4	76	2074			slow stirring - GC	1	.8 n	ot used	for the adjustment
12	123	2403			0	_			J
20	162	2306							
20	99	1404			shake flask - HPLC	8	88		

10010 11 100101	tea ana seree	100 I 119 51001			14	-			
common nam CAS registry formula MW/g∙mol ⁻¹	e p,, no. 72 C ₁ 31	o'-DDE -55-9 4H ₈ Cl ₄ 9		$t_{ m M}/^{ m o}{ m C}$ $\Delta_{ m fus}S/{ m J}{\cdot}{ m K}^{-}$	¹ ·mol ⁻¹	88.6 89.9 87.3 88.5 66.9 65.3 65.4		79 27 22 16 27 22 16	
				Vapor P	ressure				
t/°C	Ps/Pa	P _I /Pa lo	$g(P_{\rm L}/{\rm Pa})$		method		ref		note
15		0.00097	-3.01	GC - rete	ention time		36	c	alcd from the reported equation
25		0.0033	-2.48					1	$og(P_{\rm I}/P_{\rm a}) = -4554/(T/{\rm K}) + 2.79$
35 45		0.010 0.030	-1.99 -1.52					υ	used anyhow
30	0.00087	0.0040	-2.40	gas satu	ration - GC		81		
30	0.0017	0.0019	-2.73	GC - rete	ention time		100		
25 25		$0.0027 \\ 0.0021$	$-2.57 \\ -2.68$	GC - rete	ention time		86	E A	3P-1 column Apolane-87 column
LDV at 25 °C FAV at 25 °C		0.0033	-2.48 -2.47	directly t	ake the value at	$25 \ ^{\circ}\mathrm{C}$			
1110 at 25 C		0.0004	2.11	A	Salashilitar				
	Sma/mol·m ⁻³	Sur /mol·m ⁻³	log(Sr	$\frac{\text{Aqueous a}}{(m/mol \cdot m^{-3})}$	met	hod		rof	note
20	0.00013	0.00080	10g(D)	-3.10	shake flask - (GC		101	note
24	0.00020	0.0011		-2.94	shake flask -	nephelomet	ry	48	used anyhow
25 15	0.000044 0.00017	0.00024 0.0013		$-3.62 \\ -2.89$	shake flask - (imn - GC GC		38 89	particle size, 5 μ m
25 35	$0.00038 \\ 0.00074$	0.0020 0.0029		-2.69 -2.54					
45	0.0014	0.0042		-2.38	ahalaa flaala	20		00	not wood amall portials size
20	0.00013	0.00068		-3.17	snake flask - (GC		89	$0.05 \mu \mathrm{m}$
25	0.000031	0.00017		-3.77					not used, small particle size, $0.01 \mu \text{m}$
25 23	0.0000041 0.0039	0.000022 0.021		-4.66 -1.68	shake flask - 1 RP-HPLC	LSC		$47 \\ 49$	outlier
23	0.000074	0.00040		-3.40	RP-HPLC			10	· · · · ·
25 25	0.0000034 0.000019	0.00018		-4.74 -4.01	generator colu RP-HPLC	ımn		94	no isomer specified no isomer specified
LDV at 25 $^{\circ}\text{C}$		0.00081		-3.09	log mean of th (20 to 25) °C	ne values at			
FAV at 25 $^{\circ}\mathrm{C}$		0.00079		-3.10	(10 10 10) 0				
				Henry's Lav	v Constant				
t/°C	<i>H</i> /Pa•m ³ •mol ⁻	$1 K_{AW}$	$\log K_{\rm AW}$		method]	ref		note
25 23	4.2 123	0.0017 0.05	-2.77 -1.30	thermody	vnamic method		$\frac{52}{20}$	not	consistent with other properties
23 LDVL + 95 %G	369	0.15	-0.82	J. (1 (05.00	20	not	used, seawater
FAV at 25 °C	4.2 4.2	0.0017 0.0017	-2.77 -2.77	directly t	ake the value at	25 °C			
				Octanol- Partition (-Water				
t/°C	Kow	log K	W		method	1		r	ef note
25	9.0 × 10	¹⁰ 6.96	5 ····	slo	w stirring	-			58
23 25	6.8×10 7.8 × 10	⁵ 5.83	3	RP	-HPLC			6	39 35
18	1.2×10 1.2×10	6.09	,)	RP	-HPLC			6	56 56
23 23	6.0 imes10 1.9 imes10)° 5.78) ⁶ 6.29	5)	RP RP	P-HPLC P-HPLC			4	97 19
23 23	4.9×10 4.3 × 10	⁵ 5.69) }	RP RP	-HPLC			6	69 04 no isomer specified
LDV at 25 °C	1.0 × 10	6 6 96	5	dir	ectly take the va	alue at 25 °C	С	·	10 isomer speenieu
	9.0 imes 10	0.90							
FAV at 25 °C	$9.0 imes10\ 8.6 imes10$	⁶ 6.93	8	_					
FAV at 25 °C	9.0 imes10 $8.6 imes10$	⁶ 6.98	3	Octano Partition O	l–Air Coefficient				
FAV at 25 °C	9.0×10 8.6×10 $K_{\rm OA}$	log K _{OA}	3	Octano Partition (l-Air Coefficient method	1	ref		note
FAV at 25 °C	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \\ \hline \\ $	$100 K_{OA}$	}	Octano Partition C generator c	ol-Air Coefficient method olumn - GC	1	ref 12	ca	note alcd from the reported equation bg $K_{\Omega\Lambda} = 5116/(T/K) - 7.47$
FAV at 25 °C	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \end{array}$		3	Octano Partition O generator c	ol-Air Coefficient method olumn - GC	1	ref 12	ca lo (5	note alcd from the reported equation $\lg K_{OA} = 5116/(T/K) - 7.47$ i to 35) °C
FAV at 25 °C	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \\ \hline \\ $	$\begin{array}{ccc} & 0.300\\ & 6.98\\ \hline & & 6.98\\ \hline & & 10.92\\ & 10.28\\ & 9.69\\ & 9.13\\ & 9.69\\ & 9.13\\ & 9.69\\ & 9.70\\ \end{array}$	3	Octanc Partition O generator c directly tak	l-Air Coefficient method olumn - GC e the value at 25	5 °C	ref 12	ca lo (5	note alcd from the reported equation bg $K_{OA} = 5116/(T/K) - 7.47$ 5 to 35) °C
FAV at 25 °C t/°C 5 15 25 35 LDV at 25 °C FAV at 25 °C	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \end{array}$	$\begin{array}{ccc} & 0.300\\ & 0.300\\ \hline & 0.000\\ \hline & 0.$		Octance Partition C generator c directly tak	ol-Air Coefficient method olumn - GC	5 °C	ref 12	ca lo (5	note alcd from the reported equation ${\rm g}K_{\rm OA}=5116/(T/{\rm K})-7.47$ 5 to 35) °C
FAV at 25 °C t/°C 5 15 25 35 LDV at 25 °C FAV at 25 °C FAV at 25 °C	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \end{array}$			Octano Partition O generator c directly tak Octanol S	l-Air Coefficient method olumn - GC te the value at 24 colubility	5 °C	ref 12	ca lo (5	note alcd from the reported equation $g K_{OA} = 5116/(T/K) - 7.47$ 5 to 35) °C
FAV at 25 °C $ \frac{t/^{\circ}C}{5} $ 15 25 35 LDV at 25 °C FAV at 25 °C $ \frac{t/^{\circ}C}{5} $	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \\ \hline \\ $	$\begin{array}{ccc} & & 0.300\\ & & 6.95\\ \hline & & 6.95\\ \hline & & 10.92\\ & 10.28\\ & 9.69\\ & 9.13\\ & 9.69\\ & 9.70\\ \hline & \\ S_{\rm OI}/{\rm mol}\cdot{\rm m}^{-3}\\ \hline & 15.46\\ \hline \end{array}$	log(S	Octano Partition O generator c directly tak Octanol S _{DI} /mol·m ⁻³)	d-Air Coefficient method olumn - GC e the value at 29 colubility meth	5 °C	ref 12 re	ca lo (5 ef	note alcd from the reported equation $\log K_{OA} = 5116/(T/K) - 7.47$ 5 to 35) °C note
FAV at 25 °C $t/^{\circ}C$ 5 15 25 35 LDV at 25 °C FAV at 25 °C $t/^{\circ}C$ Sos 4 12	$\begin{array}{c} 9.0 \times 10 \\ 8.6 \times 10 \\ \hline \\ $	$\begin{array}{ccc} & 0.30 \\ & 0.30 \\ \hline & 0.$	log(S	Octand Partition C generator c directly tak Octanol S or/mol·m ⁻³) 3.19 3.06	d-Air Coefficient method olumn - GC te the value at 24 colubility methorslow stirring	5 °C od ng - GC	ref 12 re 13	ca lo (5 ef 8	note alcd from the reported equation $g K_{OA} = 5116/(T/K) - 7.47$ i to 35) °C note not used for the adjustment

Table 4. Reported and Selected Physical–Chemical Properties for $p_{,p'}$ -DDE

common nai	me	<i>p,p'</i> -DDD		$t_{\rm M}$ /°C	109.2		27	<u>^</u>	
formula	y no.	72-54-8 $C_{14}H_{10}Cl_4$		$\Delta_{\rm fus} S\!/J{\boldsymbol \cdot} K^{-1}{\boldsymbol \cdot} mol^{-1}$	109.0 81.0 71.5		22 27 22		CHCI2
ww.g.mor	-	321		Vapor Pressure	71.5		22		
t/°C	Ps/Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method		ref		note	
15		0.00028	-3.55	GC - retention time		36	calcd from	the repor	ted equation
25		0.00097	-3.01				$\log(P_{\rm L}/{\rm Pa})$	= -4622	(T/K) + 12.49
35		0.0031	-2.51						
45		0.0092	-2.04						
30	0.000136	0.0015	-2.83	gas saturation - GC		81			
25		0.0016	-2.79	GC - retention time		86	BP-1 colu	mn	
25		0.00062	-3.21				Apolane-8	7 column	
LDV at 25 °C		0.00097	-3.01	directly take the va	lue at 25 °C				
FAV at 25 C		0.0012	-2.95						
4/80	<u>C</u> /	S. /	3 lo r (C / m o l	Aqueous Solubility	h - J				
<u><u></u></u>	S _{WS} /mol·m ³	S _{WL} /mol·m	³ log(S _{WL} /mol	··m ³) met	nod	rei		note	
25	0.000062	0.00083	-3.08	generator col	umn - GC nonholomotwy	38			
24 15	0.00050	0.0069	-2.10 -2.51	shake flask -	CC	4ð 80	particlo sizo	5 um	
25	0.00010	0.0031	-2.31	Shake hask -	uc	03	particle size	, 5 μm	
35	0.00047	0.0042	-2.37						
45	0.00075	0.0047	-2.32						
25	0.000047	0.00062	-3.21				not used, sm	all partic	e size, $0.05 \mu \mathrm{m}$
25	0.000016	0.00021	-3.68				not used, sm	all partic	e size, $0.01\mu{ m m}$
LDV at 25 °C		0.0028	-2.56	log mean of t	ne values at				
FAV at 25 °C		0.0023	-2.64	(24 and 26)					
			i	Henry's Law Constar	t				
t/°C	<i>H</i> /Pa	a∙m ³ •mol ⁻¹	$K_{ m AW}$	$\log K_{ m AW}$	m	ethod		ref	note
25		0.67	0.00027	-3.57	thermodynam	nic me	thod	52	
LDV at 25 °C	2	0.67	0.00027	-3.57	directly take	the va	lue at 25 °C		
FAV at 25 °C	2	0.50	0.00020	-3.69					
				Octanol–Water Partition Coefficient					
t/°C	K	ow	$\log K_{ m OW}$		method		ref		note
25	1.6	$ imes 10^{6}$	6.217	slow stirrin	g		58		
25	5.4	$ imes 10^4$	4.73	RP-HPLC			65		
18	1.0	$ imes 10^5$	5	RP-HPLC			66	from	n regression
23	6.6	$\times 10^4$	4.82	RP-HPLC			97		
23	1.5	$\times 10^{5}$	5.19	RP-HPLC			49		
LDV at 25 °C FAV at 25 °C	2 1.6 7 2.2	$\times 10^{6}$ × 10 ⁶	6.22 6.33	directly tak	e the value at	25 °C			
1111 at 25		~ 10	0.55	Octorel Air					
				Partition Coefficient					
t/°C	ŀ	K _{OA} log	$g K_{OA}$	method		ref		note	
5	1.3	× 10 ¹¹ 1	1.11	generator column - (łC	12	calcd from	n the repo	rted equation
15	3.8	$\times 10^{10}$ 10	0.58				$\log K_{\rm OA} =$	4185/(<i>T</i> /I	(x) - 3.94
25	1.2	$\times 10^{10}$ 10	0.10				(5 to 35) °	C	
55 1 DV et 95 90	4.4	× 10 ⁻⁰	9.04 0.10	dimenting to be 1	10 at 25 °C				
FAV at 25 °C	1.2	$\times 10^{10}$ 10 $\times 10^{10}$ 10	0.10	unecuy take the var	ie at 20 U				
F117 at 20 U	1.1	^ IU _ I							

Table 5.	Reported a	nd Selected	Physical-Chemical	Properties fo	r p.p'-DDD

Octanol Solubility

752 Journal	of Chemical a	und Engine	ering D	ata, Vol.	. 50, No. 3, 2005		
Table 6. Repo	rted and Sele	cted Physic	eal–Che	mical P	roperties for <i>cis</i> -Chlore	dane (CC)	
common namecis-chlordanCAS registry no. $5103-71-9$ formulaC10 H6 Cl8MW/g·mol ⁻¹ 409.8		is-chlordane 103–71–9 210 H6 Cl8 09.8		$t_{ m M}^{ m /\circ C}$ $\Delta_{ m fus}S\!/ m J\!\cdot\!K^{-1}\!\cdot\!mol^{-1}$			$\begin{array}{c} 14 \\ 22 \\ 14 \\ 22 \end{array} \qquad \qquad \begin{array}{c} c_{i} \downarrow \downarrow c_{i} \downarrow \downarrow c_{i} \\ c_{i} \downarrow \downarrow \downarrow c_{i} \downarrow \downarrow c_{i} \\ c_{i} \downarrow \downarrow \downarrow c_{i} \end{array}$
				V	Vapor Pressure		
t/°C	P _s /Pa	P _L /Pa	log(F	P _L /Pa)	method	ref	note
$25 \\ 50 \\ 75 \\ 100 \\ 125$		$\begin{array}{c} 0.008 \\ 0.11 \\ 0.98 \\ 6.7 \\ 36 \end{array}$	-2 -0 0 0	.10 0.96 0.01 0.83 56	gas saturation - GC		Rordorf, unpublished
$25 \\ 50 \\ 75 \\ 100 \\ 125$		$\begin{array}{c} 0.0047 \\ 0.061 \\ 0.54 \\ 3.6 \\ 19 \end{array}$	-2 -1 -0 0 1	33 22 0.27 0.56 28	GC - retention time	36	calcd from the reported equation $\log(P_{\rm L}/{\rm Pa}) = -4284/(T/{\rm K}) + 12.04$
20 25 LDV at 25 °C FAV at 25 °C		0.0029 0.0073 0.0080 0.0073	-2 -2 -2 -2	.54 2.14 2.10 2.14	GC - AA GC - retention time linear regression	102	Li, unpublished $\log(P_{\rm L}/{\rm Pa}) = -4331/(T/{\rm K}) + 12.43$ $R^2 = 1.000$
			-	Aq	ueous Solubility		
t/°C	S _{WS} /mol·m ⁻³	$S_{\rm WL}/{\rm mol} \cdot {\rm m}^-$	$\log(S)$	WI/mol·m	method	ref	note
25 24 25 LDV at 25 °C FAV at 25 °C	0.00014 0.000078 0.0045	0.0015 0.00084 0.048 0.0011 0.0013		-2.83 -3.08 -1.32 -2.96 -2.89	shake flask - GC batch solubility generator column - (log mean of the valu (24 and 25) °C	103 104 GC 38 nes at	mixture of 3:1 cis/trans, used anyhow no isomer specified, used anyhow not consistent with other properties
	H/Pa•m ³ •mol ⁻¹	KAW	log KAW	Hen	ry's Law Constant	ref	note
25 22-24 23 23	4.9 8.4 5.4 5.9	0.0020 0.0034 0.0022 0.0024	$ \begin{array}{r} -2.71 \\ -2.47 \\ -2.66 \\ -2.62 \\ \end{array} $	gas stri wetted- fog char fog char	pping - GC wall column mber (drain) mber (cyclone)	19 95	no isomer specified, used anyhow τ-chlordane, used anyhow
23 23 LDV at 25 °C FAV at 25 °C	89 419 6.0 5.7	$\begin{array}{c} 0.036 \\ 0.17 \\ 0.0024 \\ 0.0023 \end{array}$	$-1.44 \\ -0.77 \\ -2.61 \\ -2.61$	gas stri log mea	pping - GC an of the values at (23 to 2	20 25) °C	not consistent with other properties not used, seawater
				Par	Octanol–Water rtition Coefficient		
t/°C	$K_{\rm OW}$	$\log K_{ m OW}$			method	ref	note
25 25 23 LDV at 25 °C FAV at 25 °C	$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 6.10 \\ 2.78 \\ 5.08 \\ 6.10 \\ 6.20 \end{array}$		slow sti shake fl RP-HPI directly	rring - GC lask - GC LC • take the value at 25 °C	105 103 97	not used, 3:1 <i>cis</i> -to <i>trans</i> -chlordane no isomer specified
				Par	Octanol–Air tition Coefficient		
t/°C	K _{OA}	$\log K_{\rm O}$	A		method	ref	note
5 15 25 35 25 LDV at 25 °C		10.14 9.50 8.91 8.35 8.92 8.91		gener GC - direct	rator column - GC retention time tly take the value at 25 °C	12 C	calcd from the reported equation log $K_{OA} = 5127/(T/K) - 8.29$ (5 to 35) °C Li, unpublished
FAV at 25 °C	$6.8 imes10^8$	8.83					

Octanol Solubility

t/°C	$S_{ m OS}/ m mol\cdot m^{-3}$	$S_{ m OL}/ m mol{\cdot}m^{-3}$	$\log(S_{\mathrm{OL}}/\mathrm{mol}\cdot\mathrm{m}^{-3})$	method	ref	note					
4	138	3483	3.54	slow stirring - GC	18	not used for the adjustment					
12	151	2715	3.43	_							
20	209	2714	3.43								

Table 7. Repor	rted and Seleo	cted Physical	-Chemical l	Properties for <i>trans</i> -Chlor	rdane (T	'C)		
common nan CAS registry formula MW/g·mol ⁻¹	ne try 7 no. 51 C 40	ans-chlordane 103-74-2 ₁₀ H ₆ Cl ₈ 09.8		$t_{ m M}^{\prime m o}{ m C} \Delta_{ m fus} S^{\prime} J {f \cdot} { m K}^{-1} {f \cdot} { m mol}^{-1}$	101.1 75.4	14 14		
				Vapor Pressure				
t/°C	P _s /Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method	ref		note	-
25 50 75		0.013 0.16 1.4 9.2	$-1.89 \\ -0.80 \\ 0.15 \\ 0.97$	gas saturation - GC		Rordorf, unpu	blished	
125 25 50 75 100		48 0.0066 0.082 0.71 4.6	$\begin{array}{c} 1.68 \\ -2.18 \\ -1.09 \\ -0.15 \\ 0.66 \end{array}$	GC - retention time	36	calcd from the $\log(P_{\rm I}/{\rm Pa}) = -$	e reported equation -4216/ (T/K) + 11.96	
125 20 25 LDV at 25 °C FAV at 25 °C		23 0.0039 0.0098 0.013 0.010	$1.37 \\ -2.41 \\ -2.01 \\ -1.89 \\ -1.99$	GC - AA GC - retention time linear regression	102	Li, unpublish $\log(P_{\rm I}/{\rm Pa}) = -R^2 = 1.000$	ed -4238/(<i>T</i> /K) + 12.32	
			A	queous Solubility				
t/°C	Sws/mol·m ⁻³	S _{WL} /mol∙m ⁻³ l	$og(S_{WL}/mol \cdot n)$	n ⁻³) method	ref		note	
25 24 25 LDV at 25 °C	0.00014 0.000078 0.0045	$\begin{array}{c} 0.0014 \\ 0.00080 \\ 0.046 \\ 0.0011 \end{array}$	$-2.86 \\ -3.10 \\ -1.34 \\ -2.96$	shake flask batch solubility generator column - GC log mean of the values (24 and 25) °C	103 104 38 at	mixture of 3:1 c no isomer speci not consistent v	is/trans, used anyhov fied, used anyhow vith other properties	w
FAV at 25 °C		0.0015	-2.82	(24 and 26) C				
			He	nry's Law Constant				
t/°C	H/Pa·m ³ ·mo	l^-1 K_{AW}	$\log K_{\rm AW}$	method	ref		note	
25 23 23	4.9 8.4 5.4	0.0020 0.0034 0.0022	-2.71 -2.47 -2.66	gas stripping - GC wetted-wall column fog chamber (drain)	19 95	no isomer speci τ-chlordane, us	ified, used anyhow ed anyhow	
23 23 LDV at 25 °C	135 566 6.0	$\begin{array}{c} 0.0024 \\ 0.055 \\ 0.23 \\ 0.0024 \end{array}$	-1.26 -0.64 -2.62	log mean of the values at (23 and 25) °C	20	not consistent not used, seaws	with other properties ater	ţ
FAV at 25 °C	6.8	0.0027	-2.56 Pa	Octanol-Water artition Coefficient				
t/°C	$K_{\rm OW}$	$\log K_{\rm OW}$		method	ref		note	
25 25 23 LDV at 25 °C FAV at 25 °C	$egin{array}{llllllllllllllllllllllllllllllllllll$	$6.22 \\ 2.78 \\ 5.08 \\ 6.23 \\ 6.27$	slow s shake RP-Hl direct	tirring flask PLC ly take the value at 25 °C	105 103 97	not used, 3:1 <i>ci</i> no isomer spec	is-to <i>trans-</i> chlordane ified	
			Pa	Octanol–Air artition Coefficient				
t/°C	K_{OA}	$\log K_{\mathrm{OA}}$		method	ref		note	
5 10 15 20	$egin{array}{c} 1.2 imes 10^{10} \ 5.7 imes 10^9 \ 2.8 imes 10^9 \ 1.4 imes 10^9 \ 1.4 imes 10^9 \end{array}$	10.08 9.76 9.45 9.15	gen	erator column - GC	12	calcd from the log $K_{OA} = 50$ (5 to 25) °C	ne reported equation 36/(<i>T</i> /K) – 8.03	
25 25 LDV at 25 °C FAV at 25 °C	$7.3 imes 10^{8} \ 5.9 imes 10^{8} \ 7.3 imes 10^{8} \ 6.7 imes 10^{8}$	8.86 8.77 8.86 8.83	GC dire	- retention time ectly take the value at 25 °C		Li, unpublis	hed	
			(Octanol Solubility				
	/mol⋅m ⁻³ /204 275 347	$\frac{S_{\rm OI}/{\rm mol} \cdot {\rm m}^{-3}}{4912} \\ 4699 \\ 4274$	log(S _{OL} /m 3.69 3.67 3.63	ol·m ⁻³) method 9 slow stirring - (7 3	GC	ref 18 not used	note I for the adjustment	

Table 8. Repor	tea ana sereete			ul l lopelu	co for meptuemer	(11121 1)		
common nam	ie hep	otachlor		$t_{\rm M}/^{\circ}{\rm C}$		93	14	ci 🗸 ci	
CAS registry	no. 76-	44-8		• 0/1	TZ_1 1_1	98	15		
formula MW/g·mol ⁻¹	C_{10}	H_5Cl_7		$\Delta_{\rm fus}S/J$	•K ⁻¹ •mol ⁻¹	69.64 70.96	14 15		
M W/g III01	010					10.50	10		
				Vapor P	ressure				
t/°C	P _s /Pa	P _L /Pa	$\log(P_{\rm L}/{\rm P}$	a)	method	ref		note	
25	0.021	0.16	-0.81	gas	saturation - GC		Rordorf.	unpublished	
50	0.41	1.35	0.13	0				, 1	
75	5.1	8.38	0.92						
100 125		46 320	1.66 2.51						
25		0.030	-1.52	GC	retention time	36	calcd fro	om the reported equation	L
50		0.33	-0.48				$\log(P_{\rm L}/{\rm P}$	$P_{a} = -3995/(T/K) + 11.8$	8
75		2.5	0.41						
100		15 70	1.17						
25		0.036	-1.44	GC	retention time		Li, unpu	ublished	
LDV at 25 $^{\circ}\mathrm{C}$		0.13	-0.87	line	ar regression		$\log(P_{\rm L}/{\rm P})$	$P_{a} = -3870/(T/K) + 12.1$	1
FAV at 25 °C		0.13	-0.87				$R^2 = 0.9$	996	
				Aqueous S	Solubility				
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	S _{WL} /mol·m ⁻	$\log(S_{\rm V})$	$(m_{\rm VI}/{\rm mol} \cdot {\rm m}^{-3})$	method	ref		note	
15	0.00027	0.0028		-2.55	shake flask - GC	89	particle siz	ze, 5 μm	
25	0.00048	0.0036		-2.45					
35	0.00084	0.0044		-2.35 -2.30					
25	0.00033	0.0025		-2.61			not used, s	mall particle size 0.05 µn	n
25	0.00008	0.00059		-3.23			not used, s	mall particle size $0.01 \mu n$	n
27 LDV + 25 %	0.00015	0.0010		-2.99	shake flask - GC	106	not used, o	utlier	10
EDV at 25°C FAV at 25°C		0.0035		-2.45 -2.45	linear regression		$R^2 = 0.990$	(1/K) = -770/(1/K) + 0	.13
111, 40 20 0		010000		Honmy's Los	v Constant		10 01000		
t/°C	H/Pa•m ³ •mol ⁻¹	KAW	log KAW	Henry S La	method	ref		note	
	20	MAW	log n _{AW}		method	101		note	
	211	0.019	_1 09	thormodyr	amia mathad	59			
25	30 150	$0.012 \\ 0.060$	$^{-1.92}_{-1.22}$	thermodyr gas strippi	amic method ng - GC	$52 \\ 19$	not consi	istent with other propert	ies
25 25 LDV at 25 °C	30 150 30	$0.012 \\ 0.060 \\ 0.012$	$-1.92 \\ -1.22 \\ -1.92$	thermodyr gas strippi directly ta	amic method ng - GC ke the value at 25 °C	52 19	not consi	istent with other propert	ies
25 25 LDV at 25 °C FAV at 25 °C	30 150 30 38	$0.012 \\ 0.060 \\ 0.012 \\ 0.015$	$-1.92 \\ -1.22 \\ -1.92 \\ -1.81$	thermodyr gas strippi directly ta	amic method ng - GC ke the value at 25 °C	52 19	not consi	istent with other propert	ies
25 LDV at 25 °C FAV at 25 °C	$ \begin{array}{r} 30 \\ 150 \\ 30 \\ 38 \end{array} $	$0.012 \\ 0.060 \\ 0.012 \\ 0.015$	-1.92 -1.22 -1.92 -1.81	thermodyr gas strippi directly ta Octanol	amic method ng - GC ke the value at 25 °C -Water	52 19	not consi	istent with other propert:	ies
25 LDV at 25 °C FAV at 25 °C	30 150 30 38	0.012 0.060 0.012 0.015	-1.92 -1.22 -1.92 -1.81	thermodyr gas strippi directly ta Octanol Partition (amic method ng - GC ke the value at 25 °C –Water Coefficient	52 19	not consi	istent with other propert	ies
25 LDV at 25 °C FAV at 25 °C <i>t/</i> °C	30 150 30 38 <i>K</i> _{OW}	0.012 0.060 0.012 0.015	-1.92 -1.22 -1.92 -1.81	thermodyr gas strippi directly ta Octanol Partition (amic method ng - GC ke the value at 25 °C –Water Coefficient method	52 19	not consi	istent with other propert:	ies
25 LDV at 25 °C FAV at 25 °C <i>t/</i> °C	30 150 30 38 K_{OW} 1.3×10^{6} 3.8×10^{5}	0.012 0.060 0.012 0.015 log 6.	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (amic method ng - GC ke the value at 25 °C Water Coefficient 	52 19	not consi re 10	istent with other propert: if note 5 6 from rogrossion	ies
25 25 LDV at 25 °C FAV at 25 °C <i>t/</i> °C 25 18 23	30 150 30 38 K_{OW} 1.3×10^{6} 3.8×10^{5} 1.7×10^{5}	0.012 0.060 0.012 0.015 log 6. 5. 5.	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ 24 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (sla Rl Rl Rl	amic method ng - GC ke the value at 25 °C Water Coefficient <u>method</u> ow strirring - GC 2-HPLC 2-HPLC	52 19	not consi re 10 6 9	istent with other propert: <u>f note</u> 5 6 from regression 7	ies
25 LDV at 25 °C FAV at 25 °C <i>t/</i> °C 25 18 23 23	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	0.012 0.060 0.012 0.015 log 6. 5. 5. 5.	$-1.92 \\ -1.22 \\ -1.92 \\ -1.81$ $\overline{K_{OW}}$ 1 58 24 44	thermodyr gas strippi directly ta Octanol Partition (Rl Rl Rl Rl Rl	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> pw strirring - GC P-HPLC P-HPLC P-HPLC	52 19	not consi re 10 6 9 6	istent with other propert: <u>f note</u> 5 6 from regression 7 9	ies 1
25 LDV at 25 °C FAV at 25 °C <i>t/</i> °C 25 18 23 23 25 LDV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \end{array}$	0.012 0.060 0.012 0.015 log 6. 5. 5. 5. 5.	-1.92 -1.22 -1.92 -1.81 K_{ow} 1 58 24 44 27 10	thermodyr gas strippi directly ta Octanol Partition (Rl Rl Rl Rl Rl Rl	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> ow strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC	52 19	not consi re 10 6 9 6 6	istent with other propert: <u>f note</u> 5 6 from regression 7 9 5	ies 1
25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline \\ \hline \\ 1.3\times 10^6\\ 3.8\times 10^5\\ 1.7\times 10^5\\ 2.8\times 10^5\\ 1.9\times 10^5\\ 1.3\times 10^6\\ 8.8\times 10^6\\ \end{array}$	0.012 0.060 0.012 0.015 log 6. 5. 5. 5. 5. 5. 5.	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ 24 \\ 44 \\ 27 \\ 10 \\ 94 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (Rl Rl Rl Rl Rl di	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> ow strirring - GC 2-HPLC 2-HPLC 2-HPLC 2-HPLC 2-HPLC rectly take the value	52 19 at 25 °C	not consi re 10 6 9 6 6 2	istent with other propert: f note 5 6 from regression 7 9 5	
25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \end{array}$	$0.012 \\ 0.060 \\ 0.012 \\ 0.015 \\ \hline \\ \hline \\ \hline \\ \hline \\ \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ $	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ 24 \\ 44 \\ 27 \\ 10 \\ 94 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (sla Rl Rl Rl Rl Rl di	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> ow strirring - GC 2-HPLC 2-HPLC 2-HPLC 2-HPLC 2-HPLC rectly take the value	52 19 at 25 °C	not consi re 10 6 9 6 6	istent with other propert: <u>f note</u> 5 6 from regression 7 9 5	ies 1
25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \end{array}$	0.012 0.060 0.012 0.015 log 6. 5. 5. 5. 5. 5. 5. 5.	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ 24 \\ 44 \\ 27 \\ 10 \\ 94 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (Rl Rl Rl Rl di Octano Partition (amic method ng - GC ke the value at 25 °C –Water Coefficient <u>method</u> ow strirring - GC 2-HPLC 2-HPLC 2-HPLC 2-HPLC 2-HPLC rectly take the value	52 19 at 25 °C	not consi re 10 6 9 6 6 2	istent with other propert: f note 5 6 from regression 7 9 5	1 ies
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$0.012 \\ 0.060 \\ 0.012 \\ 0.015 \\ 0.01$	$ \begin{array}{c} -1.92 \\ -1.22 \\ -1.92 \\ -1.81 \\ \hline K_{OW} \\ \hline 1 \\ 58 \\ 24 \\ 44 \\ 27 \\ 10 \\ 94 \\ \end{array} $	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl Rl Rl di Octano Partition (amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> w strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC rectly take the value coefficient nethod	52 19 at 25 °C	not consi re 10 6 9 6 6 2	istent with other propert: <u>f note</u> 5 6 from regression 7 9 5 10 10 10 10 10 10 10 10 10 10	1 ies
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$0.012 \\ 0.060 \\ 0.012 \\ 0.015 \\ \hline \\ $	-1.92 -1.22 -1.92 -1.81 K _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl Rl Rl di Octano Partition (Partition (Part	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> ow strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC Prectly take the value ol-Air Coefficient method umm - GC	52 19 at 25 °(<u>ref</u> 12	not consi re 10 6 9 6 2 2 2 2	istent with other propert: <u>f note</u> 5 6 from regression 7 9 5 <u>note</u> rom the reported equatio	ies
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \end{array}$	$0.012 \\ 0.060 \\ 0.012 \\ 0.015 \\ \hline \\ $	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Slo Rl Rl Rl di Octano Partition (I generator co	amic method ng - GC ke the value at 25 °C -Water Coefficient <u>method</u> ow strirring - GC P-HPL	52 19 at 25 °C <u>ref</u> 12	re 10 6 9 6 2 calcd f log K ₀	istent with other properti $\frac{1}{100}$ note $\frac{1}{100}$	ies
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Slo Rl Rl Rl di Octano Partition (I generator co	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC P-HPLC P	52 19 at 25 °C ref 12	not consider the constraint of the constraint o	istent with other properti- f note 5 6 from regression 7 9 55 5 $rom the reported equation _{A} = 3455/(T/K) - 3.955) ^{\circ}C$	1 1 1
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$0.012 \\ 0.060 \\ 0.012 \\ 0.015 \\ \hline \\ $	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl di Octano Partition (I generator co	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC 2-HPLC 2-HPLC 2-HPLC 2-HPLC 2-HPLC rectly take the value ol-Air Coefficient method umn - GC	52 19 at 25 °C <u>ref</u> 12	not consider the constant of	istent with other properti- f note 5 6 from regression 7 99 55 1000 1000 1000 1000 1000 1000 1000 10	1 1 1 1
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 25 25	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl di Octano Partition (T generator co	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC 2-HPLC 2	52 19 at 25 °C ref 12	not consi re 10 6 9 6 2 6 2 6 9 6 2 6 9 6 2 6 9 6 2 6 6 9 6 6 9 6 6 6 9 6 6 6 6 6 6 6 6	istent with other propert: f note 5 6 from regression 7 9 5 5 7 9 5 7 7 9 5 7 7 7 9 5 7 7 7 7 7 7 7 7	1 1 1
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 25 LDV at 25 °C EAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline \\ \hline \\ K_{OW}\\ \hline \\ 1.3 \times 10^6\\ 3.8 \times 10^5\\ 1.7 \times 10^5\\ 2.8 \times 10^5\\ 1.9 \times 10^5\\ 1.3 \times 10^6\\ 8.8 \times 10^5\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 K _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl di Octano Partition (T generator co GC - retentio directly take	amic method ng - GC ke the value at 25 °C -Water Coefficient method w strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC rectly take the value ol-Air Coefficient method umn - GC method value at 25 °C	52 19 at 25 °(ref 12	not consi re 10 6 9 6 7 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	istent with other properti- f note 5 6 from regression 7 9 5 5 10	1 1 1 1
25 LDV at 25 °C FAV at 25 °C 25 18 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \end{array}$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Slo Rl Rl Rl di Octano Partition (I generator co GC - retentio directly take	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC rectly take the value ol-Air Coefficient method umn - GC on time the value at 25 °C	52 19 at 25 °C ref 12	not consi re 10 6 9 6 2 $calcd fi log K_{O_i}$ (5 to 2)	istent with other properti $\frac{\text{f} \text{note}}{5}$ $\frac{16}{5}$ $\frac{16}{5}$ $\frac{17}{7}$ $\frac{19}{55}$ $\frac{10}{55}$ $\frac{10}{5}$	ies
25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl di Octanol GC - retention directly take Octanol S	amic method ng - GC ke the value at 25 °C -Water Coefficient method w strirring - GC P-HPLC P-	52 19 at 25 °C ref 12	not consist re 10 6 9 6 7 Calcd f $\log K_{0,}$ (5 to 2)	istent with other propertian $\frac{1}{100}$ note $\frac{1}{100}$ from regression $\frac{1}{100}$ from regression $\frac{1}{100}$ note $\frac{1}{100}$ no	
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C FAV at 25 °C AV at 25 °C Sos/r	$\begin{array}{c} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sle Rl Rl Rl di Octano Partition (r generator co GC - retentio directly take Octanol S	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC P-HPLC rectly take the value ol-Air Coefficient nethod lumn - GC on time the value at 25 °C Solubility method	52 19 at 25 °C ref 12	ref	istent with other propertian $\frac{\text{ff}}{100}$ note $\frac{100}{100}$ from regression $\frac{100}{100}$ note $\frac{100}{100}$ note $\frac{100}{100}$ note	ies
25 25 LDV at 25 °C FAV at 25 °C 25 18 23 23 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 5 10 15 20 25 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C FAV at 25 °C 10 15 20 25 25 LDV at 25 °C FAV at 25 °C FAV at 25 °C 7 4 12	$\begin{array}{r} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl di Octanol Partition (I generator co GC - retention directly take Octanol S DJ/mol·m ⁻³) 3.47 3.41	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC 2-HPLC 2	52 19 at 25 °C ref 12 C	not consi re 10 6 9 6 0 6 0 7 6 9 6 0 7 6 9 6 0 7 6 9 6 6 7 7 6 9 6 6 7 7 6 9 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	istent with other propertian istent with other properties with other propertie	ies
$\begin{array}{c} 25\\ 25\\ \text{LDV at 25 °C}\\ \text{FAV at 25 °C}\\ \hline \\ \hline \\ \hline \\ 25\\ 18\\ 23\\ 23\\ 25\\ \text{LDV at 25 °C}\\ \hline \\ \hline$	$\begin{array}{r} 30\\ 150\\ 30\\ 38\\ \hline \\ \hline$	$\begin{array}{c} 0.012\\ 0.060\\ 0.012\\ 0.015\\ \end{array}$	-1.92 -1.22 -1.92 -1.81 <i>K</i> _{OW} 1 58 24 44 27 10 94	thermodyr gas strippi directly ta Octanol Partition (Sla Rl Rl Rl Rl di Octanol Partition (T generator co GC - retention directly take Octanol S DI/mol·m ⁻³) 3.47 3.41 3.31	amic method ng - GC ke the value at 25 °C -Water Coefficient method ow strirring - GC 2-HPLC 2	52 19 at 25 °C <u>ref</u> 12 C	not consi re calcd f log K ₀ , (5 to 2) ref 18 no	istent with other propertian istent with other propertian istent with other propertian istent with other propertian istent with other properties is $\frac{1}{10000000000000000000000000000000000$	ies

Table 8.	Reported and	Selected Ph	vsical-Chemical	Properties fo	r Hentachlor	(HEPT)
Lable 0.	nepor icu anu	Deletted I II	ysical Unemical	I TOPET LIES TO	1 IICpracilloi	

Table 9. Repor	ted and Sele	cted Physical-	-Chemica	al Properti	ies for Heptao	chlor Ep	oxid	e (HEPX)	
common nam CAS registry formula MW/g∙mol ⁻¹	e he no. 10 C ₁ 38	ptachlor epoxide 24-57-3 ₀ H ₅ Cl ₇ O 9.2	e	$t_{ m M}$	/°C ₁₈ S/J•K ⁻¹ •mol ⁻¹	L .	166 161.' 61.5 55.6	$ \begin{array}{cccc} 14 \\ 7 & 15 \\ 6 & 14 \\ 2 & 15 \\ \end{array} $	
				Vapor P	ressure				
t/°C	Ps/Pa	P _L /Pa	log(P _L /Pa)	meth	od		ref	note
25 LDV at 25 °C FAV at 25 °C		$\begin{array}{c} 0.013 \\ 0.013 \\ 0.022 \end{array}$		1.88 1.88 1.65	GC - retent directly tak	ion time en			Li, unpublished indirect, used anyhow
				Aqueous S	Solubility				
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$\log(S_{\mathrm{WI}})$	/mol·m ⁻³)	n	nethod		ref	note
25 15 25 35 45 25	$\begin{array}{c} 0.00090\\ 0.00028\\ 0.00051\\ 0.00090\\ 0.0015\\ 0.00031 \end{array}$	$\begin{array}{c} 0.024 \\ 0.011 \\ 0.014 \\ 0.017 \\ 0.021 \\ 0.0082 \end{array}$		1.62 1.97 1.86 1.77 1.67 2.09	generator col shake flask -	lumn - GC GC	2	38 89	particle size, 5 μ m not used, small particle
25 27	0.000064 0.000090	0.0017 0.0022	-	2.77 2.65	shake flask -	GC		106	size, $0.05 \ \mu m$ not used, small particle size, $0.01 \ \mu m$ not used, small particle size, $0.05 \ \mu m$
LDV at 25 °C FAV at 25 °C		$\begin{array}{c} 0.018\\ 0.013\end{array}$	-	1.74 1.88	log mean of t	the values	s at 2	25 °C	size, 0.05 μ m
				Henry's Lav	w Constant				
t/°C	<i>H</i> /Pa∙m ³ •mol [−]	$1 K_{AW}$	$\log K_{\rm AW}$		method		ref		note
25 25 LDV at 25 °C FAV at 25 °C	$2.1 \\ 3.2 \\ 2.1 \\ 1.7$	$\begin{array}{c} 0.00086 \\ 0.0013 \\ 0.00086 \\ 0.00068 \end{array}$	-3.07 -2.88 -3.07 -3.17	thermody gas stripp directly ta	namic method bing - GC ake the value a	t 25 °C	52 19	not consis	tent with other properties
				Octanol Partition (–Water Coefficient				
t∕°C	$K_{ m OW}$	$\log K_{ m OV}$	V	n	nethod	ref			note
25 23 LDV at 25 °C FAV at 25 °C	$3.6 imes 10 \\ 2.5 imes 10 \\ 2.5 imes 10 \\ 2.6 imes 10 \\ 2.6 imes 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 $	$\begin{array}{cccc} 0^4 & 4.56 \\ 0^5 & 5.4 \\ 0^5 & 5.4 \\ 0^5 & 5.42 \end{array}$		shake RP-H direct	e flask - GC PLC ly taken	107 69		not consister indirect, use	nt with other properties d anyhow
				Octano Partition (ol—Air Coefficient				
t/°C	K _{OA}	$\log K_{\mathrm{O}A}$	ł		method			ref	note
25 LDV at 25 °C FAV at 25 °C	$4.2 imes 10 \\ 4.2 imes 10 \\ 3.9 imes 10$			GC - 1 direct	retention time ly take the valu	1e at 25 °(С		Li, unpublished indirect, used anyhow
				Octanol S	Solubility				
$t/^{\circ}C$ S_{OS}/r	mol•m ⁻³	S _{OI} /mol·m ⁻³	$\log(S_{ m OL})$	/mol·m ⁻³)	meth	od		ref	note
$\begin{array}{cccc} 4 & 8 \\ 12 & 8 \\ 20 & 12 \end{array}$	87.10 81.28 20.23	$5076 \\ 3468 \\ 3820$	33	8.71 8.54 8.58	slow stirri	ng - GC		18 not	used for the adjustment

 $P_{\rm S}, S_{\rm WS}$, and $S_{\rm OS}$ need to be converted to the properties of the supercooled liquid $P_{\rm L}$, $S_{\rm WL}$, and $S_{\rm OL}$. This is done by using compound-specific entropy of fusion values, $\Delta_{\rm fus}S$, and melting temperatures, $T_{\rm M}$ in eq 1:

$$\begin{aligned} \frac{S_{\rm WS}/{\rm mol}\cdot{\rm m}^{-3}}{S_{\rm WL}/{\rm mol}\cdot{\rm m}^{-3}} &= \frac{S_{\rm OS}/{\rm mol}\cdot{\rm m}^{-3}}{S_{\rm OL}/{\rm mol}\cdot{\rm m}^{-3}} \\ &= \frac{P_{\rm S}/{\rm Pa}}{P_{\rm L}/{\rm Pa}} \\ &= \exp\left[\frac{-\Delta_{\rm fus}S/J\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}}{R/J\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1}}\left(\frac{T_{\rm M}/{\rm K}}{T/{\rm K}}-1\right)\right] \end{aligned}$$
(1)

where R is the ideal gas constant and T is the experimental temperature in K. $\Delta_{\text{fus}}S$ can be calculated from the compound-specific enthalpy of fusion, $\Delta_{\text{fus}}H$, and T_{M} .

The literature search revealed that $T_{\rm M}$ values reported for a particular OCP can show large discrepancies. For example, $T_{\rm M}$ values compiled by Mackay et al.⁷ are in the range of (70 to 109) °C for α -endosulfan and (108 to 213) °C for β -endosulfan. In addition, aldrin, dieldrin, heptachlor, and heptachlor epoxide have multiple phase transitions between the solid and liquid states. Different phasetransition energies are cited by different authors, referring to different articles. The molecules in an ideal crystal acquire both translational and rotational energy as they change from the solid to the liquid state and show only one melting temperature $T_{\rm M}$.¹⁴ However, for some OCPs,

Table 10. Repo	rted and Se	elected Physics	al-Chemical P	roperties for Aldrin	00	14 ci Ci
CAS registry : formula MW/g•mol ⁻¹	no.	$\begin{array}{c} \text{addrift} \\ 309\text{-}00\text{-}2 \\ \text{C}_{12}\text{H}_8\text{Cl}_6 \\ 364.9 \end{array}$	$ \Delta $	$_{\rm fus}S/{ m J}\cdot{ m K}^{-1}\cdot{ m mol}^{-1}$	59 103.1 52.17 56.37	$\begin{array}{c} 14 \\ 16 \\ 14 \\ 16 \end{array} \qquad \qquad \begin{array}{c} Cl \\ Cl $
			V	apor Pressure		V
t/°C	P _S /Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method	ref	note
$ 35.3 \\ 41 \\ 41.6 \\ 45.6 \\ 50.8 $	$\begin{array}{c} 0.063 \\ 0.10 \\ 0.11 \\ 0.16 \\ 0.33 \end{array}$	$\begin{array}{c} 0.25 \\ 0.35 \\ 0.38 \\ 0.51 \\ 0.91 \end{array}$	$-0.60 \\ -0.45 \\ -0.42 \\ -0.29 \\ -0.04$	generator column - GC	108	
$63.3 \\ 70 \\ 25 \\ 50 \\ 75 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$1.0 \\ 2.2 \\ 0.0081 \\ 0.19 \\ 2.8$	$2.1 \\ 4.0 \\ 0.043 \\ 0.53 \\ 4.6 \\ 29$	$\begin{array}{c} 0.33 \\ 0.60 \\ -1.37 \\ -0.27 \\ 0.66 \\ 1.46 \end{array}$	gas saturation - GC		Rordorf, unpublished
$125 \\ 20 \\ 30 \\ 40 \\ 50$	$\begin{array}{c} 0.0031 \\ 0.0065 \\ 0.010 \\ 0.014 \end{array}$	$220 \\ 0.019 \\ 0.030 \\ 0.036 \\ 0.038$	$2.34 \\ -1.73 \\ -1.52 \\ -1.45 \\ -1.41$		109	outlier
20 25 50 75 100	0.0010	$\begin{array}{c} 0.0061 \\ 0.076 \\ 0.79 \\ 5.9 \\ 33 \\ 152 \end{array}$	$\begin{array}{c} -2.22 \\ -1.12 \\ -0.10 \\ 0.77 \\ 1.52 \\ 0.10 \end{array}$	relative loss rate GC - retention time	33 36	outlier calcd from the reported equation $\log(P_{\rm L}/{\rm Pa}) = -3924/(T/{\rm K}) + 12.04$
25 25 LDV at 25 °C FAV at 25 °C		0.023 0.033 0.061 0.064	-1.64 -1.48 -1.21 -1.20	GC - retention time linear regression	86	$\begin{array}{l} & \text{BP-1 column} \\ & \text{Apolane-87 column} \\ & \log(P_{\text{L}}/\text{Pa}) = -4106/(T/\text{K}) + 12.56 \\ & R^2 = 0.990 \end{array}$
			Aq	ueous Solubility		
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol{\cdot}m^{-3}$	$\log(S_{\rm WL}/{\rm mol}\cdot{\rm m}^-)$	-3) method	ref	note
25 35 45 15 25 35	$\begin{array}{c} 0.20 \\ 0.39 \\ 0.79 \\ 0.11 \\ 0.18 \\ 0.35 \end{array}$	$\begin{array}{c} 0.0029\\ 0.0043\\ 0.0068\\ 0.0020\\ 0.0026\\ 0.0039 \end{array}$	-2.54 -2.36 -2.17 -2.69 -2.58 -2.41	shake flask - UV shake flask - GC	110 89	particle size, 5 μm
45 15	$0.60 \\ 0.052$	$0.0052 \\ 0.0010$	-2.28 -3.00	shake flask - GC	89	not used, small particle size, $0.05\mu{ m m}$

50 75 100 125 25 25 LDV at 25 °C FAV at 25 °C		$\begin{array}{c} 0.79\\ 5.9\\ 33\\ 153\\ 0.023\\ 0.033\\ 0.061\\ 0.064 \end{array}$	$\begin{array}{c} -0.10\\ 0.77\\ 1.52\\ 2.18\\ -1.64\\ -1.48\\ -1.21\\ -1.20\end{array}$	GC - retention time linear regression	86	$egin{array}{c} \mathrm{BI} \ \mathrm{AI} \ \mathrm{AI} \ \mathrm{log} \ R^2 \end{array}$	$g(P_1/Pa) = -3924/(T/K) + 2-1$ $g(P_1/Pa) = -4106/(T/K) + 2=0.990$	- 12.04 - 12.56
	<u>a (1 - 2 a</u>	1 / 1 -2		queous Solubility	C			
<i>t/°</i> C	S _{WS} /mol·m ³ S	WL/mol·m ³	log(S _{WL} /mol·m	3) method	ref		note	
25 35 45 15 25 35	0.20 0.39 0.79 0.11 0.18 0.35	0.0029 0.0043 0.0068 0.0020 0.0026 0.0039	-2.54 -2.36 -2.17 -2.69 -2.58 -2.41	shake flask - UV shake flask - GC	110 89	particl	e size, 5 μ m	
45 15 25 35 45	0.60 0.052 0.14 0.24 0.46	0.0052 0.0010 0.0020 0.0026 0.0039	-2.28 -3.00 -2.69 -2.58 -2.41	shake flask - GC	89	not use	ed, small particle size, 0.	$05\mu{ m m}$
15 25 35 45	0.0055 0.013 0.030 0.065 0.027	0.00011 0.00019 0.00033 0.00056 0.00027	-3.98 -3.73 -3.48 -3.25 2.42	shake flask - GC	89	not use	ed, small particle size, 0.	01 µm
25 LDV at 25 °C FAV at 25 °C	0.027 0.017	$\begin{array}{c} 0.00037\\ 0.00025\\ 0.0029\\ 0.0027\end{array}$	-3.43 -3.61 -2.55 -2.56	generator column - GC linear regression	38	outlier log(S_W $R^2 = 0$	$L/mol \cdot m^{-3}) = -1480/(T/F)$	K) + 2.42
			Her	ry's Law Constant				
t/°C	<i>H</i> /Pa∙m³∙mol [−] 1	$K_{\rm AW}$	$\log K_{ m AW}$	method		ref	note	
25 25 LDV at 25 °C	$50 \\ 4.5 \\ 15$	$\begin{array}{c} 0.020 \\ 0.0018 \\ 0.0060 \end{array}$	$-1.69 \\ -2.74 \\ -2.22$	gas stripping - GC thermodynamic method log mean of the values at 25	°C	19 52	none above are consiste other properties	ent with
FAV at 25 °C	23	0.0094	-2.03 Pa	Octanol–Water rtition Coefficient				
t/°C	Kow		$\log K_{\rm OW}$	meth	od		ref	note
25 20 23 LDV at 25 °C FAV at 25 °C	$\begin{array}{c} 3.1 \times 1 \\ 2.5 \times 1 \\ 5.5 \times 1 \\ 3.1 \times 1 \\ 1.7 \times 1 \end{array}$	$ \begin{array}{c} 0^{6} \\ 0^{7} \\ 0^{5} \\ 0^{6} \\ 0^{6} \end{array} $	6.50 7.4 5.74 6.50 6.24	slow stirring - G RP-TLC RP-HPLC directly take the	C value a	t 25 °C	58 111 97	
			Pa	Octanol–Air rtition Coefficient				
t/°C	K_{OA}	$\log K_{ m OA}$		method	ref		note	
5 10 15 20 25 25	$\begin{array}{r} 9.2\times10^8\\ 5.4\times10^8\\ 3.2\times10^8\\ 1.9\times10^8\\ 1.2\times10^8\\ 2.0\times10^8\end{array}$	8.96 8.73 8.50 8.28 8.07 8.31	gener GC - 1	ator column - GC	12	(1 (calcd from the reported er og $K_{OA} = 3709/(T/K) - 4$ 5 to 25) °C Li, unpublished	quation .37
LDV at 25 °C FAV at 25 °C	$rac{1.2 imes10^8}{1.8 imes10^8}$	$\begin{array}{c} 8.07\\ 8.26\end{array}$	direct	ly take the value at 25 $^{\circ}\mathrm{C}$			· •	
Octanol Solubili	ty				not four	nd		

Table 11. Rep	ported and Se	lected Physic	eal-Chemical	Properties for Dieldrin			
common na CAS registr	ume ry no.	dieldrin 60-57-1		$t_{ m M}/^{\circ}{ m C}$	175 180	$\begin{array}{c} 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 \\ 14 $	
formula MW/g•mol⁻	-1	C ₁₂ H ₈ Cl ₆ O 380.9		$\Delta_{fus} S/J \boldsymbol{\cdot} K^{-1} \boldsymbol{\cdot} mol^{-1}$	$180 \\ 45.69 \\ 52.04 \\ 54.37$	$ \begin{array}{c} 15\\ 14\\ 14\\ 15\\ \end{array} $)
				Vapor Pressure			
t/°C	P _S /Pa	P _I /Pa	$\log(P_{\rm L}/{\rm Pa})$	method	ref	note	
35	0.0026	0.044	-1.35	generator column - GC	108		
38.2	0.0042	0.065	-1.19	-			
51.5	0.017	0.18	-0.74				
62.8 70	0.059	0.48	-0.32				
75.2	0.11	1.1	0.04				
20	0.00037	0.010	-2.00	gas saturation - GC	112		
30	0.00135	0.027	-1.58	-			
40	0.00452	0.067	-1.18				
25 50	0.00079	0.018	-1.74	gas saturation - GC		Rordorf, unpublished	
50 75	0.018	1.5	-0.89				
100	2.6	9.3	0.97				
125	19	43	1.63				
20	0.000387	0.010	-1.98		84		
20	0.00010	0.0028	-2.55		109	outlier	
30 40	0.00019	0.0056	-2.42 -2.27				
50	0.00071	0.0079	-2.10				
25		0.010	-2.00	GC - retention time	36	calcd from the reported equatio	n
50		0.13	-0.88			$\log(P_{\rm L}/{\rm Pa}) = -4310/(T/{\rm K}) + 12.$	46
75		1.2	0.08				
100 125		8.1 43	0.91				
25		0.0053	-2.27	GC - retention time	86	BP-1 column	
25		0.0060	-2.22			Apolane-87 column	
LDV at 25 °C FAV at 25 °C		$\begin{array}{c} 0.016\\ 0.014\end{array}$	$-1.78 \\ -1.84$	linear regression		$\log(P_{\rm L}/{\rm Pa}) = -3995/(T/{\rm K}) + 11.$ $R^2 = 0.998$	62
			А	queous Solubility			
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$\log(S_{\rm WL}/{ m mol}\cdot{ m m})$	n ⁻³) method	ref	note	
25	0.00053	0.012	-1.92	generator column - GO	C 38		
10	0.00025	0.0093	-2.03	slow stirring - GC	113		
15	0.00029	0.0091	-2.04				
20 25	0.00032	0.0086	-2.06 -2.03				
30	0.00054	0.0002	-1.97				
35	0.00064	0.011	-1.96				
40	0.00076	0.011	-1.95				
25 25	0.00066	0.015	-1.82	shake flask - UV	110		
35 45	0.0026	0.024	-1.02 -1.47				
25	0.00047	0.011	-1.96	shake flask - GC	92	particle size, 5 μ m	
27	0.00049	0.011	-1.98	shake flask - GC	106	-	
10	0.00021	0.0079	-2.10	shake flask - GC	114		
20	0.00037	0.0099	-2.00				
30 15	0.00053	0.010	-1.98 -2.13	shake flask - GC	89	narticle size 5 um	
25	0.00051	0.012	-1.93	shake hask Ge	00		
35	0.0011	0.018	-1.75				
45	0.0017	0.022	-1.66		~~		
15 95	0.00017	0.0054	-2.27	shake flask - GC	89	not used, small particle size, $0.05 \ \mu$	n
25 35	0.00039	0.012	-2.04 -1.92				
45	0.0013	0.012	-1.79				
15	0.000026	0.00083	-3.08	shake flask - GC	89	not used, small particle size, 0.01 μm	m
25	0.000058	0.0013	-2.88				
35	0.00012	0.0021	-2.68				
40 25	0.00024	0.0030	-2.52 -2.07	shake flask - GC	92	not used small particle size 0.4 um	
LDV at 25 °C	0.00001	0.012	-1.94	linear regression	02	$\log(S_{WL}/mol \cdot m^{-3}) = -1158/(T/K) +$	1.94
FAV at 25 $^{\circ}\mathrm{C}$		0.013	-1.88	C		$R^{2} = 0.595$	

Table 11. (Continued)

				Henry's Law	Constant		
t/°C	$H/Pa\cdot m^3\cdot mol^-1$	$K_{ m AW}$	$\log K_{\rm AW}$		method	ref	note
25	1.0	0.00041	-3.39	thermodyna	mic method	52	
25	5.9	0.0024	-2.63	gas strippin	g - GC	19	not consistent with other properties
20	3.2	0.0013	-2.89	gas strippin	g - UV	115	not consistent with other properties
LDV at 25 $^{\circ}\mathrm{C}$	1.0	0.00041	-3.39	directly tak	e the value at 25 °C		
FAV at 25 $^{\circ}\mathrm{C}$	1.1	0.00044	-3.36				
				Octanol– Partition Co	Water efficient		
t/°C	$K_{ m OW}$	$\log K_0$	OW	1	nethod	ref	note
25	$2.5 imes10^5$	5.40)	slow s	tirring - GC	58	
25	$3.4 imes10^4$	4.54	1	slow s	tirring - GC	59	average of four measures not consistent with other properties
20	$1.6 imes10^6$	6.2		RP-TI	LC	111	
23	$5.8 imes10^4$	4.76	3	RP-H	PLC	97	
18	$3.2 imes10^4$	4.51	L	RP-H	PLC	66	
18	$4.5 imes10^4$	4.65	5				
LDV at 25 °C	$2.5 imes10^5$	5.40)	direct	ly taken		
FAV at 25 °C	$3.1 imes 10^5$	5.48	3				
				Octanol Partition Co	-Air efficient		
t/°C	K_{OA}	$\log K_{\mathrm{OA}}$		me	ethod	ref	note
5	$6.4 imes10^9$	9.81		generator colu	mn - GC	12	calcd from the reported equation
15	$2.2 imes10^9$	9.33		-			$\log K_{\rm OA} = 3790/(T/{\rm K}) - 3.82$
25	$7.8 imes10^8$	8.89					(5 to 45) °C
35	$3.0 imes10^8$	8.48					
45	$1.2 imes10^8$	8.09					
25	$1.0 imes10^9$	9.02		GC - retention	time		Li, unpublished
LDV at 25 $^{\circ}\mathrm{C}$	$7.8 imes10^8$	8.89		directly take t	he value at 25 °C		
FAV at 25 °C	$6.9 imes10^8$	8.84					
				Octanol So	lubility		
$t/^{\circ}\mathrm{C}$ S_{OS}	/mol·m ⁻³ $S_{\rm Ol}$	[∕mol•m ⁻³	$\log(S$	$_{OL}/mol \cdot m^{-3})$	method	re	f note
4	91	4218		3.63	slow stirring - G	C 18	not used for the adjustment
12	105	3665		3.56			
20	107	2882		3.46			

such as aldrin, dieldrin, β -endosulfan, heptachlor, and its metabolite heptachlor epoxide, a characteristic transition phase between the ordered solid phase and the liquid phase exists just below the melting points. In this rotator or plastic phase, the molecules are weakly ordered and behave as if they were in a liquid state. The phase-transfer process of such chemicals can be described as

solid phase
$$\xrightarrow{T_{tr}(\Delta_{tr}H)}$$
 transition phase $\xrightarrow{T_{M}(\Delta_{M}H)}$ liquid phase

and a temperature of transition $T_{\rm tr}$ from the solid to the rotator phase can then be observed. The existence of such an intermediate phase for aldrin, dieldrin, heptachlor, and β -endosulfan during their solid—liquid phase transition is clearly shown by endothermic peaks in their differential scanning calorimetry (DSC) curves.^{15–17} During phase transfer from solid to liquid, chemicals that have characteristic rotator phases acquire only translational energy upon melting because they have already acquired rotational energy at a lower temperature.¹⁴ The values of the melting entropies $\Delta_{\rm M}S$ are usually small and equal to the gas constant R;¹⁵ the sums of the energies of solid-rotator and rotator–liquid-phase transitions correspond to the energy of fusion: $^{14}\,$

$$\Delta_{\rm fus} H/\rm kJ \cdot mol^{-1} = \Delta_{\rm tr} H/\rm kJ \cdot mol^{-1} + \Delta_{\rm M} H/\rm kJ \cdot mol^{-1} \quad (2)$$

$$\Delta_{\rm fus} S/J \cdot {\rm mol}^{-1} \cdot {\rm K}^{-1} = \Delta_{\rm tr} S/J \cdot {\rm K}^{-1} \cdot {\rm mol}^{-1} + \Delta_{\rm M} S/J \cdot {\rm K}^{-1} \cdot {\rm mol}^{-1}$$

=

$$=\frac{10^{-3}\Delta_{\rm tr}H/\rm kJ\cdot mol^{-1}}{T_{\rm tr}/\rm K} + \frac{10^{-3}\Delta_{\rm M}H/\rm kJ\cdot mol^{-1}}{T_{\rm M}/\rm K} (3)$$

The $\Delta_{\rm fus}H$ and $\Delta_{\rm fus}S$ values for aldrin, dieldrin, heptachlor, heptachlor epoxide, and β -endosulfan listed in Tables 8, 9, 11, 12, and 14 were calculated according to eqs 2 and 3 on the basis of $T_{\rm tr}$, $T_{\rm M}$, $\Delta_{\rm tr}H$, and $\Delta_{\rm M}H$ values found in the literature.^{14–16} We believe that one reason for the large discrepancies in reported $T_{\rm M}$ values in the literature is that transition temperatures $T_{\rm tr}$ have been cited erroneously as melting temperatures $T_{\rm M}$ in some literature sources. In

Table 12. Repo	orted and S	elected Physic	cal-Chemical	Properties for	r Endrin				
common nan CAS registry formula MW/g·mol ⁻¹	ne 7 no.	$\begin{array}{c} {\rm endrin} \\ {\rm 72-20-8} \\ {\rm C}_{12}{\rm H}_8{\rm C}_{\rm l6}{\rm O} \\ {\rm 380.9} \end{array}$		$t_{ m M}$ /°C $\Delta_{ m fus}S$ /J·K $^{-1}$ ·mo	<u> </u> -1	$110.5 \\ 110.2 \\ 43.24 \\ 40.73$	15 16 15 16		
				Vapor Pressure	,				
t/°C	Ps/Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method		ref		note	
25 LDV at 25 °C FAV at 25 °C		$0.0052 \\ 0.0052 \\ 0.0031$	-2.29 -2.29 -2.50	GC - retention directly taken	i time		Li, unpublished	l indirect, use	d anyhow
			А	queous Solubili	ty				
t/°C S	$S_{WS}/mol \cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$\log(S_{\mathrm{WL}}/\mathrm{mol}\cdot\mathrm{m})$	n ⁻³) me	ethod	ref		note	
25 25 35 45	0.00068 0.00060 0.0010 0.0013	0.0030 0.0027 0.0036 0.0039	-2.52 -2.57 -2.45 -2.41	generator shake flas	column - G k - UV	C 38 110			
25 15 25 35 45	$\begin{array}{c} 0.00068 \\ 0.00034 \\ 0.00066 \\ 0.0011 \\ 0.0016 \end{array}$	$\begin{array}{c} 0.0030 \\ 0.0019 \\ 0.0029 \\ 0.0039 \\ 0.0048 \end{array}$	-2.52 -2.72 -2.53 -2.40 -2.32	shake flas shake flas	k - GC k - GC	92 89	particle size, 5 particle size, 5	μm μm	
15 25 35 45	0.00024 0.00047 0.00083 0.0014	0.0013 0.0021 0.0030 0.0040	$\begin{array}{r} -2.82 \\ -2.88 \\ -2.68 \\ -2.53 \\ -2.40 \end{array}$	shake flas	k - GC	89	not used, smal	l particle size	, 0.05 μm
15 25 35 45	$\begin{array}{c} 0.000026\\ 0.000064\\ 0.00015\\ 0.00032\\ \end{array}$	$\begin{array}{c} 0.00015\\ 0.00029\\ 0.00054\\ 0.00092\\ \end{array}$	-3.83 -3.54 -3.26 -3.04	shake flas	k - GC	89	not used, smal	l particle size	, 0.01 μm
25 LDV at 25 °C FAV at 25 °C	0.00050	0.0022 0.0027 0.0030	-2.65 -2.57 -2.53	shake flas linear reg	k - GC ression	92	not used, smal log($S_{\rm WL}$ /mol·m $R^2 = 0.893$	1 particle size = -3) = -1022/(, 0.06 μm <i>T</i> /K) + 0.86
		2 1 4	Her	nry's Law Const	tant				
	H/Pa	·m ³ ·mol ⁻ 1	KAW			meth	nod	ref	note
25 LDV at 25 °C FAV at 25 °C		0.63 0.64 1.1	0.00026 0.00026 0.00043	-3.59 -3.59 -3.37	directly	take the	value at 25 °C	52	
			Pa	Octanol-Water artition Coefficie	ent				
t/°C		Kow	$\log K_{ m OW}$		n	nethod		ref	note
25 23 23 LDV at 25 %	1. 3. 5.	$egin{array}{l} 6 imes 10^5 \ 6 imes 10^4 \ 1 imes 10^4 \ 6 imes 10^5 \end{array}$	5.20 4.56 4.71 5.20	sl R R	ow stirring P-HPLC P-HPLC	- GC	o at 25 °C	58 69 97	
FAV at 25 °C	2 8.	8×10^4	4.94		frectry take	the valu			
			Pa	Octanol-Air	ent				
t/°C	K_{OA}	$\log K_{\mathrm{OA}}$		method		ref	f	note	
5 10 15 20 25 30	1.6×10 8.3×10 4.4×10 2.4×10 1.3×10 7.6×10	$\begin{array}{cccc} 0^9 & 9.20 \\ 0^8 & 8.92 \\ 0^8 & 8.64 \\ 0^8 & 8.38 \\ 0^8 & 8.13 \\ 0^7 & 7.88 \end{array}$	gene	erator column - (GC	12	calcd from $\log K_{\rm OA} =$ (5 to 35) °	n the reported 4436/(<i>T</i> /K) – C	l equation 6.75
35 25 LDV at 25 °C FAV at 25 °C	4.4×10 1.2×10 1.3×10 2.1×10	$egin{array}{ccc} & 7.65 \ 0^9 & 9.09 \ 0^8 & 8.13 \ 0^8 & 8.32 \ \end{array}$	GC - direc	retention time ctly take the val	ue at 25 °C		Li, unpub	lished	
	mol·m ⁻³	$S_{ m OI}/ m mol\cdot m^{-3}$	log(Sot/mo	pl·m ⁻³)	method		ref	note	
4 12 20	95 100 115	705 603 572	2.85 2.78 2.76	slo	w stirring -	GC	18 not u	used for the ad	ljustment

-				-				
common nan CAS registry formula MW/g•mol ⁻¹	ne (7 no. 9	x-endosulfan 959-98-8 C ₉ H ₆ C ₁₆ O ₃ S 406.9		$t_{\mathrm{M}}^{\prime \mathrm{o}}\mathrm{C}$ $\Delta_{\mathrm{fus}}S^{\prime}\mathrm{J}\cdot\mathrm{K}^{-1}\cdot\mathrm{mol}^{-1}$	106.8 (no 85.9 26.32 (no 46.02	t used) t used)	22 17 22 17	
				Vapor Pressure				
t/°C	P _S /Pa	P _L /Pa	$\log(P_{\rm L}/{\rm Pa})$	method		ref		note
5 15 25 35 45		0.00058 0.0020 0.0060 0.017 0.046	$-3.23 \\ -2.71 \\ -2.22 \\ -1.76 \\ -1.33$	GC - retention time		36	calcd from log(P _L /Pa) used anyh	the reported equation = $-4201/(T/K) + 11.87$ ow
25 LDV at 25 °C FAV at 25 °C		0.0086 0.0060 0.0044	$-2.06 \\ -2.22 \\ -2.35$	GC - retention time directly take the val	ue at 25 °C		Li, unpubl	ished
	<u> </u>	<u> </u>	2 1 (0 / 1	Aqueous Solubility				
t/°C	S _{WS} /mol·m ⁻³	$S_{\rm WL}/{ m mol}\cdot{ m m}^-$	$\log(S_{\rm WL}/{\rm mol})$	•m ⁻³) met	thod	ref		note
20 25 20 LDV at 25 °C	0.0013 0.0013 0.00016	$\begin{array}{c} 0.0043 \\ 0.0040 \\ 0.0006 \\ 0.0042 \end{array}$	-2.36 -2.39 -3.25 -2.38	shake flask - G generator colur liquid—liquid e log mean of the (20 and 25) °C	C nn - GC traction-GC/ values at	116 38 MS 117	not consist	ent with other properties
FAV at 25 °C		0.0063	-2.20					
				Henry's Law Constar	nt			
t/°C	<i>H</i> /Pa∙m³∙n	$1 K_{A}$	$_{\rm W}$ log $K_{\rm AW}$	method	1	ref		note
25 20	0.72 6.6	0.000 0.002	$\begin{array}{rrr} 029 & -3.54 \\ 27 & -2.57 \end{array}$	thermodynamic me wetted- wall colum	ethod n	$\begin{array}{c} 52\\118\end{array}$	distilled wa	ater, not consistent with
20 LDV at 25 °C FAV at 25 °C	$13 \\ 0.72 \\ 0.70$	0.008 0.000 0.000	53 -2.28 029 -3.54 028 -3.55	directly take the va	alue at 25 °C	118	seawater	
				Octanol–Water Partition Coefficient	t			
t/°C	Kow	$\log K_0$	W	method	1	ref		note
25 25 LDV at 25 °C FAV at 25 °C	$5.5 imes 10 \\ 6.8 imes 10 \\ 5.5 imes 10 \\ 8.7 imes 10$	$\begin{array}{cccc} 0^4 & 4.74 \\ 0^3 & 3.83 \\ 0^4 & 4.74 \\ 0^4 & 4.94 \end{array}$	sha sha dir	ake flask - GC ake flask - GC rectly take the value a	1 1 t 25 °C	.07 .19	not consisten	t with other properties
				Octanol–Air Partition Coefficient	t			
t/°C	K ₀	A log	KOA	metho	d	re	ef	note
5 10 15 20	$4.8 \times 2.5 \times 1.4 \times 7.6 \times 4.2$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.68 .40 .14 .88	generator column	- GC	1	2 calco log <i>K</i> (5 to	I from the linear eq $\chi_{OA} = 4333/(T/K) - 5.9$ $25) ^{\circ}C$
25 25 LDV at 25 °C FAV at 25 °C	$4.3 \times 6.8 \times 4.3 \times 3.1 \times 3.1 \times 10^{-4}$	10 ⁸ 8 10 ⁸ 8 10 ⁸ 8 10 ⁸ 8 10 ⁸ 8	.83 .63 .49	GC - retention tim directly take the v	e alue at 25 °C		Li, u	npublished
				Octanol Solubility not found				

Table 13. Reported and Selected Physical–Chemical Properties for α-Endosulfan

other cases, the true melting temperature $T_{\rm M}$ was not observed properly.

No articles reporting measured data for the melting point and the heat fusion of endrin have been found. Plato reported that endrin decomposes when it is heated to the melting point.¹⁴ In a study by Ksiazczak and Nagata,¹⁵ endrin showed an endothermic peak and a large exothermic peak during heating. The endothermic peak was assigned to a solid-rotator transition, and the exothermic peak was assigned to decomposition. In a DSC curve for endrin by Rodante et al.,¹⁶ two endothermic peaks occur before endrin decomposes. The reported onset temperature and enthaly change of the first and larger of these two peaks are in agreement with the results by Ksiazczak and Nagata, but unfortunately, no thermodynamic information is provided for the second tiny peak. To convert its solid properties into those of the supercooled liquid, the melting temperature and entropy of fusion were estimated. $T_{\rm tr}$ was taken as the $T_{\rm M}$ value, and $\Delta_{\rm fus}S$ was calculated from $T_{\rm tr}$ and $\Delta_{\rm tr}H$ taken from the literature.^{15,16}

Results and Discussion

The physical-chemical properties for 14 OCPs are compiled in Tables 1 to 14. At the top of each Table are

Table 14. Rep	orted and Se	elected Physic	al-Chem	ical Prope	erties for β-End	osulfan				
common nameβCAS registry no.3formula0MW/g·mol ⁻¹ 4		β-endosulfan 33213-65-9 C ₉ H ₆ C ₁₆ O ₃ S 406.9		$t_{ m M}$ /°C $\Delta_{ m fus}S$ /e	J•K ⁻¹ •mol ⁻¹	213.1 51.89		15 15	CI	
				Vapor	Pressure					
t/°C	Ps/Pa	P _L /Pa log	g(P _L /Pa)		method		ref			note
5 15 25 35 45 LDV at 25 °C FAV at 25 °C		0.00040 0.0014 0.0043 0.0013 0.0035 0.0043 0.0040	$\begin{array}{r} -3.40 \\ -2.86 \\ -2.36 \\ -1.89 \\ -1.45 \\ -2.36 \\ -2.40 \end{array}$	GC - rete directly t	ntion time ake the value at 2	25 °C	36	calcd f log(P _L used a	from the /Pa) = - nyhow	e reported equation -4306/(T/K) + 12.08
				Aqueous	s Solubility					
t/°C	$S_{ m WS}/ m mol\cdot m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$\log(S_{\rm WI})$	/mol·m ⁻³)		method			ref	note
20 25 20	0.0011 0.00069 0.00028	$\begin{array}{c} 0.11 \\ 0.057 \\ 0.028 \end{array}$	-	-0.96 -1.25 -1.56	shake flask - G generator colur liquid—liquid e	C nn - GC xtraction	- GC	/MS	$116 \\ 38 \\ 117$	not consistent with
LDV at 25 °C FAV at 25 °C		$0.079 \\ 0.089$	-	-1.10 -1.05	log mean of the	values a	t 20 a	and 25 °C		other properties
				Henry's L	aw Constant					
t/°C	<i>H</i> /Pa∙m³∙mo	l ⁻ 1 $K_{\rm AW}$	$\log K_{\rm AV}$	V	method		ref			note
25 20	0.72 6.6	0.000016 0.000360	$-4.80 \\ -3.44$	thermo wetted-	dynamic method wall column		$\begin{array}{c} 52\\118\end{array}$	distille other r	d water	, not consistent with
20 LDV at 25 °C FAV at 25 °C	$13 \\ 0.040 \\ 0.045$	$\begin{array}{c} 0.000870\ 0.000016\ 0.000018 \end{array}$	$-3.06 \\ -4.80 \\ -4.74$	directly	v take the value a	t 25 °C	118	seawat	er	
				Octano Partition	ol–Water A Coefficient					
t/°C	$K_{ m OW}$	$\log K_{ m OW}$		m	nethod	ref	f		1	note
25 25 LDV at 25 °C FAV at 25 °C	$6.0 imes 10^4\ 4.2 imes 10^3\ 6.0 imes 10^4\ 6.0 imes 10^4$	$ 4.78 \\ 3.62 \\ 4.78 \\ 4.78 $	sh sh di	ake flask - ake flask - rectly take	GC GC the value at 25 °C	107 119 C	7)	not consi	stent w	ith other properties
				Octa Partition not	nol—Air 1 Coefficient 1 found					

Octanol Solubility not found

Table 15. Literature-Derived Values (LDVs) and Assigned Uncertainty Estimates (u) for the Physical-Chemica
Properties of 14 Organochlorine Pesticides at 25 °C

	$P_{\mathrm{L}}/\mathrm{Pa}$	ι	$S_{ m WL}/ m mol$	$H/Pa \cdot m^3 \cdot mol^{-1}$		$\log I$	Kow	$\log K_{ m OA}$		
compound	LDV	$u_{\rm A}$	LDV	u_{W}	LDV	$u_{\rm AW}$	LDV	$u_{\rm OW}$	LDV	<i>u</i> _{OA}
HCB	0.14	1	0.00096	1	52	3	5.52	1	7.38	3
PeCB	1.2	1	0.011	2	74	3	5.08	1	6.90	3
p,p'-DDT	0.00056	1	0.00027	3	1.1	3	6.28	3	9.81	2
p,p'-DDE	0.0033	3	0.00081	3	4.2	5	6.96	5	9.69	3
p,p'-DDD	0.00097	3	0.0028	3	0.67	5	6.22	5	10.10	3
CC	0.0080	3	0.0011	5	6.0	5	6.10	4	8.91	3
TC	0.013	3	0.0011	5	6.0	5	6.22	4	8.86	3
HEPT	0.13	3	0.0035	2	30	5	6.10	4	7.64	3
HEPX	0.013	5	0.018	3	2.1	4	5.40	3	8.62	5
aldrin	0.061	1	0.0029	2	15	5	6.50	4	8.07	3
dieldrin	0.016	1	0.012	2	1.0	4	5.40	5	8.89	3
endrin	0.0052	5	0.0027	2	0.64	4	5.20	4	8.13	3
α -endo	0.0060	3	0.0042	5	0.72	4	4.74	4	8.63	3
β -endo	0.0043	3	0.079	5	0.040	4	4.78	4		

the data that are included in the derivation of the LDVs, including the experimental temperature, the method used, and the literature reference. For comparison and completeness, the data that are not included in the derivation of the LDVs are also listed, together with the reason for exclusion. The LDVs and FAVs at 25 °C for each property are given at the bottom of Tables 1 to 14. A summary of the LDVs for the 14 chemicals at 25 °C is presented in Table 15 along with the uncertainty estimates u_X assigned to each property. The corresponding FAVs and the required

Table 16.	Internally Cons	istent Physical-	-Chemical Properties	(Final Adjusted	Values, FAV) at 25 °C an	d the Percent
Required	Adjustment (adj	j) for 14 Organo	chlorine Pesticides				

	P _L /Pa		$S_{ m WL}/ m mol\cdot m^{-3}$		H/Pa·m ³ ·mol ⁻¹		$\log K_{ m OW}$		$\log K_{ m OA}$		$S_{ m OL}/ m mol\cdot m^{-3}$
compound	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV
HCB	0.094	-33	0.0014	49	65	26	5.64	30	7.21	-32	618
PeCB	1.0	-13	0.014	31	72	-4	5.19	30	6.73	-33	2212
p,p'-DDT	0.00048	-14	0.00042	55	1.1	0	6.39	30	9.73	-16	1053
p,p'-DDE	0.0034	3	0.00079	-3	4.2	0	6.93	-5	9.70	3	6830
p,p'-DDD	0.0012	20	0.0023	-16	0.50	-25	6.33	31	10.03	-15	4986
CC	0.0073	-9	0.0013	16	5.7	-6	6.20	25	8.83	-15	2017
TC	0.010	-19	0.0015	43	6.8	13	6.27	11	8.83	-8	2783
HEPT	0.13	0	0.0035	0	38	28	5.94	-30	7.76	31	3099
HEPX	0.022	69	0.013	-27	1.7	-21	5.42	4	8.59	-7	3466
aldrin	0.064	4	0.0027	-4	23	55	6.24	-45	8.26	57	4720
dieldrin	0.014	-12	0.013	14	1.1	8	5.48	22	8.84	-11	4027
endrin	0.0031	-40	0.0030	11	1.1	64	4.94	-44	8.32	54	262
α-endo	0.0044	-26	0.0063	51	0.70	-2	4.94	58	8.49	-29	546
β -endo	0.0040	-9	0.089	13	0.045	13	4.78		9.53		5357

 Table 17. Sample Calculation for Obtaining Internally Consistent Final Adjusted Values (FAV) of Hexachlorobenzene

	P _L /Pa	$S_{ m A}/ m mol{\cdot}m^{-3}$	$S_{ m WL}/ m mol\cdot m^{-3}$	$K_{ m AW}$	$K_{ m OW}$	K_{OA}	ϵ_1	ϵ_2
$ LDV log LDV u_X $	$0.14 \\ -0.855$	$0.000056 \\ -4.249 \\ 1 \\ -0.090$	$0.00096 \\ -3.018 \\ 1 \\ -0.090$	$0.021 \\ -1.678 \\ 3 \\ -0.269$	${3.3 imes 10^5}\ {5.522}\ {2}$	$2.4 imes 10^7 \ 7.384 \ 3$	-0.448	0.183
$\delta_X (eq 8)$ $\delta_X (final)$ $\log FAV$ FAV	0.093	-0.174 -4.423 0.000039	-0.174 -2.845 0.0014	$\begin{array}{c} 0.069 \\ -0.100 \\ -1.578 \\ 0.026 \end{array}$	$egin{array}{c} 0.046 \ 0.113 \ 5.635 \ 4.3 imes 10^5 \end{array}$	$\begin{array}{c} 0.069 \\ 0.170 \\ 7.214 \\ 1.6 imes 10^7 \end{array}$	0.000	0.000

Table 18. Literature-Derived Values (LDV) and Assigned Uncertainty Estimates (u) for the Internal Phase-Transfer Energies of Hexa- and Pentachlorobenzene

	$\Delta U_{ m A}/ m kJ m \cdot mol^{-1}$		$\Delta U_{ m W}/ m kJ$ ·	$\Delta U_{ m W}/ m kJ m \cdot mol^{-1}$		$\Delta U_{ m AW}/ m kJ m mol^{-1}$		$\Delta U_{ m OW}$ /kJ·mol $^{-1}$		mol^{-1}
compd	LDV	<i>u</i> _A	LDV	u_{W}	LDV	$u_{\rm AW}$	LDV	$u_{\rm OW}$	LDV	<i>u</i> _{OA}
HCB PeCB	${67.59^a}\over{61.65^b}$	1 1	9.50^{c} 12.10^{c}	3 3	$47.70^d \\ 40.60^d$	3 3	$-24.40^{e} \\ -22.80^{e}$	3 3	-75.50^{f} -71.25^{f}	3 3

^{*a*} Regression of log($P_{\rm I}$ /Pa) vs 1/(T/K) using data from refs 24 and 28–34. ^{*b*} Regression of log($P_{\rm I}$ /Pa) vs 1/(T/K) using data from refs 35, 71, and 72. ^{*c*} Derived from data given in ref 37. ^{*d*} Derived from data given in derived form from data given in ref 50. ^{*e*} Derived from data given in ref 54. ^{*f*} Derived from data given in ref 13.

Table 19. Internally Consistent Final Adjusted Values (FAV) of the Energies of Phase Transfer for Hexa- and Pentachlorobenzene and Percent Required Adjustment (adj)

	$\Delta U_{ m A}/ m kJ m \cdot mol^{-1}$		$\Delta U_{ m W}/ m k_{ m c}$	$\Delta U_{ m W}/ m kJ\cdot m mol^{-1}$		$\Delta U_{ m AW}/ m kJ m \cdot mol^{-1}$		$\Delta U_{ m OW}/ m kJ m \cdot mol^{-1}$		$J \cdot mol^{-1}$	$\Delta U_{ m O}/{ m kJ}{ m \cdot mol^{-1}}$
compd	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV	adj/%	FAV
HCB PeCB	$\begin{array}{c} 65.69 \\ 60.22 \end{array}$	-3 -2	$\begin{array}{c} 15.20\\ 16.39 \end{array}$	$\begin{array}{c} 60\\ 35 \end{array}$	$\begin{array}{c} 50.49\\ 43.83\end{array}$	6 8	$-24.70 \\ -25.11$	1 10	$-75.20 \\ -68.94$	-0.4 -3	$\begin{array}{c} -9.51 \\ -8.72 \end{array}$

percentage adjustment for the 14 chemicals are listed in Table 16.

LDVs could be derived for all properties, except for the solubility in octanol. Also, no measured K_{OA} for β -endosulfan could be found during our literature search. One study¹⁸ reported S_{OS} for most of the investigated chemicals, but these data are inconsistent with other measured properties. Although the measured S_{OS} data were not used in the adjustment algorithm, they are still included in the Tables. All S_{OL} values and the K_{OA} of β -endosulfan in Table 16 are calculated from the other properties using thermodynamic constraints.

When deriving LDVs for the solubility of the chlordanes, the measured $S_{\rm WS}$ value from Warner¹⁹ had to be applied to both cis and trans isomers because of the lack of isomerspecific measurements. Liquid-phase solubility $S_{\rm WL}$ values were then calculated according to eq 1 using isomer-specific $T_{\rm M}$ and $\Delta_{\rm fus}S$ values. The LDVs for the Henry's law constant H of the cis and trans isomers of chlordane are also identical. Although isomer-specific H values for *cis*and *trans*-chlordane had been reported by Atlas et al.,²⁰ those data are not consistent with other property measurements. Nevertheless, it is encouraging to see good consistency between the five LDVs for the two isomers, which points to accurate measurements and suggests that the real solubility and *H* values are likely close to the LDV values.

Property Values at 25 °C. The physical-chemical properties for most OCPs are difficult to measure accurately. The variability of the literature data listed in Tables 1 to 14 gives an approximate indication of the considerable uncertainty of these values. The measured data for the water solubility of the OCPs shows especially large discrepancies (Figure 1). However, the literaturederived values for the 14 OCPs are reasonably consistent. In general, most properties needed to be adjusted by less than 30% to achieve consistency. Out of 70 property values for 14 OCPs, 8 required adjustments are higher than 50%; and the maximum adjustment to the LDVs at 25 °C is 69%. The required adjustments thus occur normally well within the range of the measured values (i.e., no FAV falls outside the range of reported literature values). This indicates that the procedure applied in the selection of the LDVs is successful in selecting already reasonably consistent property values.

Figure 1. Relationships between the logarithm of the water solubility $(\log S_{WL} / mol \cdot m^{-3})$ and the reciprocal absolute temperature [1/(T/K)] for hexachlorobenzene (HCB), pentachlorobenzene (PeCB), heptachlor (HEPT), and heptachlor epoxide (HEPX), p,p'-DDT, p,p'-DDE, p,p'-DDD, aldrin, dieldrin, and endrin based on data from Shiu et al. (open, left-pointing triangle);³⁷ Weil et al. $(\mathbf{\nabla})$;³⁸ Miller et al. (\mathbf{O}) ;³⁹ Hashimoto et al. (open, right-pointing triangle);⁴⁰ Yalkowsky et al. (\diamond) ;⁴¹ Patton $(\mathbf{\Phi})$;⁴² Konemann (\triangle) ;⁴³ Chiou $(\mathbf{\Phi})$;⁴⁴ Li and Yalkowsky (∇) ;⁴⁵ Paschke et al. (\times) ;⁴⁶ Metcalf et al. (|);⁴⁷ Hollifield (black, left-pointing triangle);⁴⁸ Chiou $(\mathbf{\Phi})$;⁵⁵ Opperhuizen et al. (open square with cross);⁷³ Boyd et al. (\diamond) ;⁷⁴ Banerjee (\Rightarrow) ;⁷⁵ Atkins and Eggleton (*);⁸⁴ Webster et al. (\odot) ;⁸⁵ Chiou et al. (black, right-pointing triangle);⁸⁷ Ellgehausen et al. $(\mathbf{\Phi})$;⁸⁸ Biggar and Riggs, 0.01 μ m ($\mathbf{\Phi}$), 0.05 μ m ($\mathbf{\Phi}$), and 5 μ m ($\mathbf{\Delta}$);⁸⁹ Biggar ($\mathbf{\star}$);⁹⁰ Robeck et al., 0.06 μ m (open, downward-pointing triangle with cross);⁵¹⁰ Richardson and Miller ($\mathbf{\Phi}$);¹¹⁰ Eye (open, right-pointing triangle with cross);¹¹³ and Bowman and Sans (open hexagon with cross).¹¹⁴

Figure 2. Relationships between the logarithm of the liquid vapor pressure (log P_L /Pa) and the reciprocal absolute temperature [1/(*T*/K)] for hexachlorobenzene (HCB), pentachlorobenzene (PeCB), *cis*-chlordane (CC), *trans*-chlordane (TC), *p,p*'-DDT, *p,p*'-DDE, *p,p*'-DDD, aldrin, dieldrin, heptachlor (HEPT), α -endosulfan, and β -endosulfan based on data from Sears and Hopke (\bigtriangledown) ;²⁴ Liu and Dickhut (\triangle) ;²⁸ Wania et al. (black, left-pointing triangle);³⁹ Farmer et al. (\bigcirc);³⁰ Rordorf et al. (open, right-pointing triangle);³¹ OECD (\diamondsuit);³² Dobbs and Cull (black, right-pointing triangle);³³ Gückel et al. (\square);³⁴ Stull et al. (\bigcirc);³⁵ Hinckley et al. (\bigcirc);³⁶ Rordorf (\bigcirc);⁷¹ Polednicek et al. (\oiint);⁷² Rothman (+);⁸⁰ Spencer and Cliath (\blacklozenge);⁸¹ Dickinson (\bigstar);⁸² Atkins and Eggleton (\blacklozenge),⁸⁴ Webster et al. (\bigcirc);⁸⁵ Bidleman, BP-1 (×); Apolane-87 (*);⁸⁶ Westcott et al. (\neg);⁹⁹ Spencer and Cliath (open, upward-pointing triangle with cross);¹¹² Li, unpublished (\blacktriangledown); and Rordorf, unpublished (\blacksquare).

The LDVs and FAVs for the properties of α -endosulfan presented here are slightly different from those reported previously.²¹ The previous data were obtained by using a

default value for $\Delta_{fus}S$ because Donnely's value was judged to be unreasonably low.²² Since then, an experimentally determined $\Delta_{fus}S$ for α -endosulfan by Rodante et al.¹⁷ has

Figure 3. Relationships between the logarithm of the air–water partition coefficient (log K_{AW}) and the reciprocal absolute temperature [1/(T/K)] for HCB and PeCB based on 10 data points from Hulscher (Δ),⁵⁰ Oliver (\Box);⁵¹ and Altschuh (\bigcirc).⁵²

Figure 4. Relationships between the logarithm of the octanol–water partition coefficient (log K_{OW}) and the reciprocal absolute temperature [1/(T/K)] for HCB and PeCB based on data from Miller et al. (+);³⁹ Chiou (-);⁴⁴ Bahadur et al. (\bigstar);⁵⁴ Chiou and Schmedding (\square);⁵⁵ Pereira et al. (\bigstar);⁵⁶ Watarai et al. (\bigstar);⁵⁷ De Bruijn (*);⁵⁸ Brook et al. (\triangle);⁵⁹ Toll et al. (\bigcirc);⁶⁰ Andersson and Schrader (-)⁶¹; and Banerjee et al. (\blacksquare).⁷⁵

been located and was used in this study. This should lead to smaller errors in the calculated liquid properties of α -endosulfan.

Specimen Calculation of the Final Adjustment. To apply the adjustment algorithm by Beyer et al.,⁹ all properties need to be converted either into solubilities in units of mol·m⁻³ or into a dimensionless partition coefficient. The solubility in air, S_A , can be derived from the supercooled vapor pressure using

$$S_{\rm A}/{\rm mol}\cdot{\rm m}^{-3} = \frac{n/{\rm mol}}{V/{\rm m}^3} = \frac{P_{\rm L}/{\rm Pa}}{(R/{\rm J}\cdot{\rm K}^{-1}\cdot{\rm mol}^{-1})(T/{\rm K})}$$
 (4)

According to Cole and Mackay,¹²⁰ the properties S_A , $S_{\rm WL}$, $K_{\rm AW}$, $K_{\rm OW}$, and $K_{\rm OA}$ can be related through two constraining equations

$$\log K_{\rm AW} = \log \left(S_{\rm A}/\rm{mol}\cdot\rm{m}^{-3} \right) - \log \left(S_{\rm WI}/\rm{mol}\cdot\rm{m}^{-3} \right) \quad (5)$$

$$\log K_{\rm AW} = \log K_{\rm OW} - \log K_{\rm OA} \tag{6}$$

The deviation ϵ from the ideal relationship caused by experimental errors is expressed as

$$\log K_{AW}^{LDV} - \log \left(S_{A}^{LDV} / \text{mol} \cdot \text{m}^{-3} \right) + \log \left(S_{WL}^{LDV} / \text{mol} \cdot \text{m}^{-3} \right) = \epsilon_{1} (7)$$

$$\log K_{\rm AW}^{\rm LDV} - \log K_{\rm OW}^{\rm LDV} + \log K_{\rm OA}^{\rm LDV} = \epsilon_2 \tag{8}$$

The goal when obtaining FAVs is to adjust the LDVs by

factors δ_X such that eqs 5 and 6 are fully satisfied; that is, the deviations derived from eqs 9 and 10 are equal to zero.

$$(\log K_{\rm AW}^{\rm LDV} - \delta_{\rm AW}) - [\log (S_{\rm A}^{\rm LDV}/{\rm mol} \cdot {\rm m}^{-3}) + \delta_{\rm A}] + [\log (S_{\rm WL}^{\rm LDV}/{\rm mol} \cdot {\rm m}^{-3}) - \delta_{\rm WL}] = 0 (9)$$

$$(\log K_{AW}^{LDV} - \delta_{AW}) - (\log K_{OW}^{LDV} + \delta_{OW}) + (\log K_{OA}^{LDV} - \delta_{OA}) = 0 (10)$$

Therefore,

$$\log \left(S_{\rm A}^{\rm FAV} / \rm{mol} \cdot \rm{m}^{-3} \right) = \log \left(S_{\rm A}^{\rm LDV} / \rm{mol} \cdot \rm{m}^{-3} \right) + \delta_{\rm A} \quad (11)$$

$$\log \left(S_{\rm WL}^{\rm FAV} / \text{mol} \cdot \text{m}^{-3} \right) = \log \left(S_{\rm WL}^{\rm LDV} / \text{mol} \cdot \text{m}^{-3} \right) - \delta_{\rm WL} \quad (12)$$

$$\log K_{\rm AW}^{\rm FAV} = \log K_{\rm AW}^{\rm LDV} - \delta_{\rm AW}$$
(13)

$$\log K_{\rm OW}^{\rm FAV} = \log K_{\rm OW}^{\rm LDV} + \delta_{\rm OW}$$
(14)

$$\log K_{\rm OA}^{\rm FAV} = \log K_{\rm OA}^{\rm LDV} - \delta_{\rm OA}$$
(15)

The adjustment factor δ_X for each property is calculated on the basis of the assigned uncertainty u_X .

$$\delta_{\rm X} = \epsilon \frac{u_{\rm X}}{\sum u_{\rm X}} \tag{16}$$

Beyer et al.⁹ proposed two approaches to derive the FAVs.

One approach is to apply iterations. Equations 7 and 8 are used to derive ϵ_1 and ϵ_2 and δ_X for one property (i.e., K_{AW}), and the properties are adjusted separately using both equations. The adjusted properties are then used to derive new ϵ and δ_X values. By repeating this iteration, the properties will converge to a set (FAVs) that is consistent with both eqs 7 and 8. The second approach also first deduces different ϵ and δ_X values separately according to eqs 7 and 8. For the property that occurs in both equations (i.e., K_{AW}), the mean adjustment factor is calculated and applied to both equations. The δ_X values for the remaining properties (i.e., S_A and S_{WL}) in the constraining equation are then adjusted again on the basis of their uncertainties to account for the remaining error in the equation. The deviations between the two approaches have been discussed by Beyer et al.,⁹ and the same adjusted properties were obtained for PCB 15 when applying both methods.

As an example, HCB is used to illustrate the second approach of obtaining consistent values (FAVs) for $P_{\rm L}, S_{\rm WL}$, K_{AW} , K_{OW} , and K_{OA} from their LDVs (Table 1). The properties used in the adjustment algorithm are presented in Table 17. Inserting the LDVs of HCB into eqs 7 and 8, we find that ϵ_1 and ϵ_2 are -0.448 and 0.183, respectively. On the basis of eq 16, the δ_X value of each property is derived separately according to ϵ_1 and ϵ_2 and listed in Table 15. The δ_{AW} values of log K_{AW} are -0.269 (eq 7) and 0.069 (eq 8). The LDV of log K_{AW} is thus corrected by the mean (-0.100) of -0.269 and 0.069. The δ_A and δ_{WL} for eq 9 are then modified according to the uncertainties of $S_{
m A}$ and $S_{
m WL}$ to account for the remaining error of ϵ_1 (-0.348); δ_{OW} and δ_{OA} are deduced accordingly. All final δ_X values are listed in Table 17. Substituting the LDV and the final δ_X of each property into eqs 9 and 10 satisfies both equations. The logarithm of FAV for each property is thus obtained using eqs 11 to 15.

Energies of Phase Transfer. Because of the lack of measured temperature-dependence data for most investigated chemicals, the LDVs of the internal energies of phase transfer, ΔU , could be derived only for HCB and PeCB. These values are presented in Table 18 together with their origin and uncertainty estimate. The FAVs for the ΔU values and the required percentage of adjustment are given in Table 19. Plots of the logarithm of the measured data for a property versus reciprocal absolute temperature are shown in Figures 1 to 4. In general, the measured temperature dependence of the properties for HCB and PeCB is in good agreement. The required adjustments to the energies of phase transfer ΔU are usually less than 10%; only the measured temperature dependence of the water solubilities $\Delta U_{\rm W}$ needed to be adjusted by a higher percentage (Table 19). Compared to the other energies of phase transition, the absolute value of $\Delta U_{\rm W}$ is small. This makes the relative adjustment of $\Delta U_{\rm W}$ appear to be large, even though the absolute adjustment of $\Delta U_{\rm W}$ is not much larger than that of the other phase-transfer energies.

Acknowledgment

Dr. Nanqin Li and Erin Harding are kindly acknowledged for help in collecting some of the property data, and Hang Xiao is also acknowledged for helpful discussions.

Literature Cited

- George, J. L.; Frear, D. E. H. Pesticides in the Antarctic. J. Appl. Ecol. 1966, 3, 155–167.
- (2) Bidleman T. F.; Olney C. E. Chlorinated hydrocarbons in the Sargasso Sea atmosphere and surface water. *Science* 1974, 183, 516-518.
- (3) Halsall, C. J. Investigating the occurrence of persistent organic pollutants POPs in the Arctic: their atmospheric behavior and

interaction with the seasonal snow pack. Environ. Pollut. 2004, 128, 163–175.

- (4) Meijer, S. N.; Ockenden, W. A.; Steinnes, E.; Corrigan, B. P.; Jones, K. C. Spatial and Temporal Trends of POPs in Norwegian and UK Background Air: Implications for Global Cycling. *Environ. Sci. Technol.* 2003, 37, 454–461.
- (5) Wania F.; Mackay D. The evolution of mass balance models of persistent organic pollutant fate in the environment. *Environ. Pollut.* **1999**, 100, 223–40.
- (6) United Nations Environment Programme, UNEP, North American regional report, regionally based assessment of persistent toxic substances. Global Environment Facility, United Nations, 2002.
- (7) Mackay, D.; Shiu, W. Y.; Ma, K. C. *Physical-Chemical Properties and Environmental Fate Handbook*; Chapman & Hall/CRCnet Base: Boca Raton, FL, 2000.
- (8) Pontolillo, J.; Eganhouse, R. P. The Search for Reliable Aqueous Solubility S_w and Octanol-Water Partition Coefficient K_{OW} Data for Hydrophobic Organic Compounds: DDT and DDE as a Case Study; U.S. Geological Survey Water-Resources Investigation Report 01-4201: 2001.
- (9) Beyer, A.; Wania, F.; Gouin, T.; Mackay, D.; Matthies, M. Selecting internally consistent physicochemical properties of organic compounds. *Environ. Toxicol. Chem.* 2002, 21, 941-953.
- (10) Li, N.; Wania, F.; Lei, Y. D.; Daly, G. L. A comprehensive and critical compilation, evaluation, and selection of physical-chemical property data for selected polychlorinated biphenyls. J. Phys. Chem. Ref. Data 2003, 32, 1545-1590.
- (11) Xiao, H.; Li, N.; Wania, F. Compilation, Evaluation, and Selection of Physical-Chemical Property Data for α-, β-, and γ-Hexachlorocyclohexane. J. Chem. Eng. Data 2004, 49, 173–185.
- (12) Shoeib, M.; Harner, T. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides. *Environ. Toxicol. Chem.* 2002, 21, 984–990.
- (13) Harner, T.; Mackay, D. Measurement of octanol-air partition coefficients for chlorobenzenes, PCBs, and DDT. *Environ. Sci. Technol.* **1995**, *29*, 1599–1606.
- (14) Plato, C. Differential Scanning Calorimetry as a General Method for Determining Purity and Heat of Fusion of High-Purity Organic Chemicals. Application to 64 Compounds. Anal. Chem. 1972, 44, 1531–1534.
- (15) Ksiazczak, A.; Nagata, I. Crystal-plastic and plastic-liquid phase transitions, and purity determination. *Thermochim. Acta* 1995, 254, 31–39.
- (16) Rodante, F.; Marrosu, G.; Catalani, G. Thermal analysis and kinetic study of decomposition processes of some pesticides. J. Therm. Analysis 1992, 38, 2669-2682.
- (17) Rodante, F.; Vecchio, S.; Catalani, G.; Guidotti, M. Thermal analysis and nonisothermal kinetic study of some pesticides. Part II, chlorinate ferivatives. J. Therm. Anal. Calorim. 2002, 60, 605– 622.
- (18) Niimi, A. J. Solubility of organic chemicals in octanol triolein and cod liver oil and relationships between solubility and partition coefficients. Water Res. 1991, 25, 1515–1521.
- (19) Warner, H. P.; Cohen, J. M.; Ireland, J. C. Determination of Henry's Law Constants of Selected Priority Pollutants; EPA/600/ D-87/229; NTIS PB87-212684; U.S. Environmental Protection Agency: Cincinnati, OH, 1987.
- (20) Atlas, E. L.; Foster, R.; Giam, C. S. Air-Sea Exchange of High Molecular Weight Organic Pollutants: Laboratory Studies. *Environ. Sci. Technol.* 1982, *16*, 283–286.
 (21) Muir, D. C. G.; Teixeira, C.; Wania, F. Empirical and modeling
- (21) Muir, D. C. G.; Teixeira, C.; Wania, F. Empirical and modeling evidence of regional atmospheric transport of currently used pesticides. *Environ. Toxicol. Chem.* **2004**, 23, 2421–2432.
- (22) Donnelly, J. R.; Drewes, L. A.; Johnson, R. L.; Munslow, W. D.; Knapp, K. K. Purity and heat of fusion data for environmental standards as determined by differential scanning calorimetry. *Thermochim. Acta* **1990**, *167*, 155–187.
- (23) Miller, M. M.; Ghodbane, S.; Wasik, S. P.; Tewari, Y. B.; Martire, D. E. Aqueous Solubilities, Octanol/Water Partition Coefficients, and Entropies of Melting of Chlorinated Benzenes and Biphenyls. J. Chem. Eng. Data 1984, 29, 184–190.
 (24) Sears, G. W.; Hopke, E. R. Vapor Pressures of nAphthalene,
- (24) Sears, G. W.; Hopke, E. R. Vapor Pressures of nAphthalene, Anthracene, and Hexachlorobenzene in a Low-Pressure Region. J. Am. Chem. Soc. 1949, 71, 1632–1634.
- (25) Sabbah, R.; An, X. W. Thermodynamic analysis of chlorobenzenes. *Thermochim. Acta* 1991, 179, 81–88.
- (26) Sabbah, R.; El Watik, L. New reference materials for the calibration temperature and energy of differential thermal analysers and scanning calorimeters. J. Therm. Analysis 1992, 38, 855-863.
- (27) Plato, C.; Glasgow, A. R., Jr. Differential scanning calorimetry as a general method for determining the purity and heat of fusion of high-purity organic chemicals. Application to 95 compounds. *Anal. Chem.* **1969**, *41*, 330–336.
- (28) Liu, K.; Dickhut, R. M. Saturation vapor pressures and thermodynamic properties of benzene and selected chlorinated benzenes at environmental temperatures. *Chemosphere* 1994, 29, 581–589.

- (29) Wania, F.; Shiu, W. Y.; Mackay, D. Measurement of the Vapor Pressure of Several Low-Volatility Organochlorine Chemicals at Low Temperatures with a Gas Saturation Method. J. Chem. Eng. Data 1994, 39, 572–577.
- (30) Farmer, W. J.; Yang, M. S.; Letey, J.; Spencer, W. F. Hexachlorobenzene: Its vapor presure and vapor phase diffuson in soil. *Soil Sci. Soc. Am. J.* **1980**, 44, 676–680.
- (31) Rordorf, B. F.; Sarna, L. P.; Webster, G. R. B. Vapor pressure determination for several polychlorodioxins by two gas saturation methods. *Chemosphere* **1986**, *15*, 2073–2076.
- (32) OECD Test Guideline No 4: Vapour pressure curve; Report No. 104, 1981.
- (33) Dobbs, A. J.; Cull, M. R. Volatilisation of chemicals Relative loss rates and the estimation of vapor pressures. *Environ. Pollut. B* 1982, 3, 289–298.
- (34) Gückel, W.; Kastel, R.; Lewerenz, J.; Synnatschke, G. A method for determining the volatility of active ingredients used in plants protection. Part III: The temperature relationship between vapour pressure and evaporation rate. *Pestic. Sci.* **1982**, *13*, 161– 168.
- (35) Stull, D. R. Vapor Pressure of Pure Substances: Organic Compounds. Ind. Eng. Chem. 1947, 39, 517–550.
- (36) Hinckley, D. A.; Bidleman, T. F.; Foreman, W. T.; Tuschall, J. R. Determination of Vapor Pressures for Nonpolar and Semipolar Organic Compounds from Gas Chromatographic Retention Data. J. Chem. Eng. Data 1990, 35, 232-237.
 (37) Shiu, W. Y.; Wania, F.; Hung, H.; Mackay, D. Temperature
- (37) Shiu, W. Y.; Wania, F.; Hung, H.; Mackay, D. Temperature Dependence of Aqueous Solubility of Selected Chlorobenzenes, Polychlorinated Biphenyls, and Dibenzofuran. J. Chem. Eng. Data 1997, 42, 293–297.
- (38) Weil, L.; Dure, G.; Quentin, K.-E. Solubility in water of insecticide chlorinated hydrocarbons and polychlorinated biphenyls in view of water pollution. *Wasser-Abwasserforsch.* **1974**, *7*, 169–175.
 (39) Miller, M. M.; Wasik, S. P.; Huang, Shiu, W. Y.; Mackay, D.
- (39) Miller, M. M.; Wasik, S. P.; Huang, Shiu, W. Y.; Mackay, D. Relationships between Octanol–Water Partition Coefficient and Aqueous Solubility. *Environ. Sci. Technol.* **1985**, *19*, 522–529.
- Aqueous Solubility. Environ. Sci. Technol. 1985, 19, 522-529.
 (40) Hashimoto, Y.; Tokura, K.; Ozaki, K.; Strachan, W. M. J. A comparison of water solubilities by the flask and micro-column methods. Chemosphere 1982, 11, 991-1001.
 (41) Yalkowsky, S. H.; Orr, R. J.; Valvani, S. C. Solubility and Mathematical Science 2014.
- (41) Yalkowsky, S. H.; Orr, R. J.; Valvani, S. C. Solubility and Partitioning. III: The Solubility of Halobenzenes in Water. *Ind. Eng. Chem. Fundam.* **1979**, *18*, 351–353.
 (42) Patton, J. S.; Stone, B.; Papa, C.; Abramowitz, R. Solubility of
- (42) Patton, J. S.; Stone, B.; Papa, C.; Abramowitz, R. Solubility of fatty acid and other hydrophobic molecules in liquid trioleoylglcerol. J. Lipid Res. 1984, 25, 189–197.
- (43) Könemann, W. H.; Musch, A. Quantitative structure-activity relationships in fish toxicity studies. Part 1: Relationship for 50 industrial pollutants. *Toxicology* **1981**, *19*, 209-221.
- (44) Chiou, C. T. Partition Coefficients of Organic Compounds in Lipid-Water Systems and Correlations with Fish Bioconcentration Factors. *Environ. Sci. Technol.* **1985**, *19*, 57-62.
- (45) Li, A.; Yalkowsky, S. H. Solubility of organic solutes in ethanol/ water mixtures. J. Pharm. Sci. 1994, 83, 1735-1740.
 (46) Paschke, A.; Popp, P.; Schüurmann, G. Water solubility and G. Water solubility and Science and Scie
- (46) Paschke, A.; Popp, P.; Schüürmann, G. Water solubility and octanol/water partitioning of hydrophobic chlorinated organic substances determined by using SPME/GC. *Fresenius' J. Anal. Chem.* **1998**, *360*, 52–57.
- (47) Metcalf, R. L.; Kapoor, I. P.; Lu, P.-Y.; Schuth, C. K.; Sherman, P. Model ecosystem studies of the environmental fate of six organochlorine pesticides. *Environ. Health Perspect.* **1973**, 4, 35– 44.
- (48) Hollifield, H. C. Rapid nephelometric estimate of water solubility of highly insoluble organic chemicals of environmental interest. *Bull. Environ. Contam. Toxicol.* **1979**, *23*, 579–586.
- (49) Chin, Y.; Weber, W. J.; Voice, T. C. Determination of partition coefficient and aqueous solubilities by reverse phase chromatography-II. Water. Res. 1986, 20, 1443-1450.
- (50) ten Hulscher, Th. E. M.; van der Velde, L. E.; Bruggeman, W. A. Temperature dependence of Henry's law constants for selected chlorobenzenes, polychlorinated biphenyls and polycyclic aromatic hydrocarbons. *Environ. Toxicol. Chem.* **1992**, *11*, 1595–1603.
- (51) Oliver, B. G. Desorption of chlorinated hydrocarbons from spiked and anthropogenically contaminated sediments. *Chemosphere* 1985, 14, 1087–1106.
- (52) Altschuh, J.; Brüggemann, R.; Santl, H.; Eichinger, G.; Piringer, O. G. Henry's law constants for a diverse set of organic chemicals: Experimental determination and comparison of estimation methods. *Chemosphere* **1999**, *39*, 18711–1887.
- methods. Chemosphere 1999, 39, 18711-1887.
 (53) Hansen, K. C.; Zhou, Z.; Yaws, C. L.; Aminabhavi, T. M. Determination of Henry's Law Constants of Organics in Dilute Aqueous Solutions. J. Chem. Eng. Data 1993, 38, 546-550.
 (54) Bahadur, N. P.; Shiu, W. Y.; Boocock, D. G. B.; Mackay, D.
- (54) Bahadur, N. P.; Shiu, W. Y.; Boocock, D. G. B.; Mackay, D. Temperature Dependence of Octanol–Water Partition Coefficient for Selected Chlorobenzenes. J. Chem. Eng. Data, **1997** 42, 685– 688.
- (55) Chiou, C. T.; Schmedding, D. W. Partitioning of Organic Compounds in Octanol-Water Systems. *Environ. Sci. Technol.* 1982, 16, 4-10.

- (56) Pereira, W. E.; Rostad, C. E.; Chiou, C. T.; Brinton, T. I.; Barber, L. B.; Demcheck, D. K.; Demas, C. R. Contamination of Estuarine Water, Biota, and Sediment by Halogenated Organic Compounds: A Field Study. *Environ. Sci. Technol.* **1988**, 22, 772– 778.
- (57) Watarai, H.; Tanaka, M.; Suzuki, N. Determination of Partition Coefficient of Halobenzenes in Heptane/Water and 1-Octanol/ Water Systems and Comparison with the Scaled Particle Calculation. Anal. Chem. 1982, 54, 702-705.
 (58) De Bruijn, J.; Busser, F.; Seinen, W.; Hermens, J. L. M. Detertion of the state of the sta
- (58) De Bruijn, J.; Busser, F.; Seinen, W.; Hermens, J. L. M. Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the 'slow-stirring' method. *Environ. Toxi*col. Chem. **1989**, 8, 499–512.
- (59) Brooke, D. N.; Dobbs, A. J.; Williams, N. Octanol/water partitioning coefficient P: measure, estimation, and interpretation, particularly for chemicals with P > 10⁵. Ecotoxicol. Environ. Saf. 1986, 11, 251-260.
- (60) Tolls, J.; Bodo, K.; De Felip, E.; Dujardin, R.; Kim, Y. H.; Moeller-Jensen, L.; Mullee, D.; Nakajima, A.; Paschke, A.; Pawliczek, J.; Tadeo, J.-L.; Tognucci, A.; Webb, J.; Zwijzen, A. C. Slow-Stirring Method for Determining the *n*-Octanol/Water Partition Coefficient *P*_{ow} for Highly Hydrophobic Chemicals: Performance Evaluation in a Ring Test. *Environ. Sci. Technol.* **2003**, *22*, 1051–1057.
- (61) Andersson, J. T.; Schrader, W. A Method for Measuring 1-Octanol-Water Partitioning Coefficient. Anal. Chem. 1999, 71, 3610-3614.
- (62) Platford, R. F.; Carey, J. H.; Hale, E. J. The environmental significance of surface films: Part 1 - octanol-water partition coefficients for DDT and hexachlorobenzene. *Environ. Pollut. B* 1982, 3, 125-128.
- (63) Könemann, W. H.; Zelle, R.; Busser, F. Determination of log P_{oct} values of chloro-substituted benzenes, toluenes and anilines by high-performance liquid chromatography of ODS-silica. J. Chromatogr. **1979**, 178, 559–565.
- (64) Garst, J. E.; Wilson, W. C. Accurate, wide-range, automated, highperformance liquid chromatographic method for the estimation of octanol/water partition coefficients I: Effect of chromatographic conditions and procedure variables on accuracy and reproducibility of the method. J. Pharm. Sci. 1984, 73, 1616-1623.
- (65) McDuffie, B. Estimation of octanol/water partition coefficients for organic pollutants using reverse-phase HPLC. *Chemosphere* 1981, 10, 73-83.
- (66) De Kock, A. C.; Lord, D. A. A simple procedure for determining octanol-water partition coefficients using reversed phase high performance liquid chromatography RPHPLC. *Chemosphere* 1987, 16, 133-142.
- (67) Burkhard, L. P.; Kuehl, D. W.; Veith, G. D. Evaluation of reversed phase liquid chromatography/mass spectrometry for estimation of n-octanol/water partition coefficients of organic chemicals. *Chemosphere* 1985, 14, 1551–1560.
- (68) Eadsforth, C. V. Application of reverse-phase HPLC for the determination of partition coefficients. *Pestic. Sci.* 1986, 17, 311– 325.
- (69) Gobas, F. A. P. C.; Lahittete, J. M.; Garofalo, G.; Shiu, W. Y.; Mackay, D. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals: comparison with 1-octanol-water partitioning. J. Pharm. Sci. 1988, 77, 265-272.
- (70) Veith, G. D.; Austin, N. M.; Morris, R. T. A rapid method for estimation log P for organic chemicals. *Water Res.* 1979, 13, 43– 47.
- (71) Rordorf, B. F. Thermodynamic and thermal properties of polychlorinated compounds: The vapor pressures and flow tube kinetics of 10 dibenzo-para-dioxines. *Chemosphere* 1985, 14, 885-892.
- (72) Polednicek, M.; Guetachew, T.; Ruzicka, V.; Rohac, V.; Zabransky, M. Vapor pressure and sublimation pressures of dichlorobenzenes 1,2-, 1,3-, 1,4- trichlorobenzenes 1,2,3- and 1,3,5- and pentachlorobenzene. J. Phys. Chem. Data **1996**, 2, 41–50.
- (73) Opperhuizen, A.; Velde, E. W. V. D.; Gobas, F. A. P. C.; Liem, D. A. K.; Steen, J. M. D.; Hutzinger, O. Relationship between bioconcentration in fish and steric factors of hydrophobic chemicals. *Chemosphere* 1985, 14, 1871–1896.
 (74) Boyd, E. M.; Meharg, A. A.; Wright, J.; Killham, K. Toxicity of
- (74) Boyd, E. M.; Meharg, A. A.; Wright, J.; Killham, K. Toxicity of chlorobenzenes to a lux-marked terrestrial bacterium, pseudomonas fluorescens. *Environ. Toxicol. Chem.* **1998**, *17*, 2134–2140.
 (75) Banerjee, S.; Yalkowsky, S. H.; Valvani, S. C. Water Solubility
- (75) Banerjee, S.; Yalkowsky, S. H.; Valvani, S. C. Water Solubility and Octanol/Water Partition Coefficients of Organics. Limitations of the Solubility-Partition Coefficient Correlation. *Environ. Sci. Technol.* 1980, 14, 1227-1229.
 (76) Hammers, W. E.; Meurs, G. J.; De Ligny, C. L. Correlations
- (76) Hammers, W. E.; Meurs, G. J.; De Ligny, C. L. Correlations between liquid chromatographic capacity ratio data on lichrosorb RP-18 and partition coefficients in the octanol-water system. J. Chromatogr. 1982, 247, 1-13.
 (77) Bruggeman, W. A.; Van der Steen, J. M. D.; Hutzinger, O.
- (77) Bruggeman, W. A.; Van der Steen, J. M. D.; Hutzinger, O. Reversed-phase thin-layer chromatography of polynuchlear aromatic hydrocarbons and chlorinated biphenyls. Relationship with hydrophobicity as measured by aqueous solubility and octanolwater partition coefficient. J. Chromatogr. **1982**, 238, 335–346.

- (78) Doucette, W. J.; Andren, A. W. Estimation of octanol/water partition coefficients: Evaluation of six methods for highly hydrophobic aromatic hydrocarbons. Chemosphere 1988, 17, 345-359
- (79) Haller, H. L.; Bartlett, P. D.; Drake, N. L.; Newman, M. S.; Christol, S. J.; Eaker, C. M.; Hayes, R. A.; Kilmer, G. W.; Magerlein, B.; Mueller, G. P.; Schneider, A.; Wheatley, W. The Chromosoft for a section of The Art of Character 1945. Chemical Composition of Technical DDT. J. Am. Chem. Soc. 1945, 67, 1591-1602.
- (80) Rothman, A. M. Low Vapor Pressure Determination by the Radiotracer Transpiration Method. J. Agric. Food Chem. 1980, 28, 1225–1228.
 (81) Spencer, W. F.; Cliath, M. M. Volatility of DDT and related
- compounds. J. Agric. Food Chem. **1972**, 20, 645–649. Dickinson, W. The vapour pressure of 1: 1:p: p' dichorodiphenyl
- (82)trichloroethane D. D. T. Trans. Faraday Soc. 1956, 52, 31-35
- (83) Balson, E. W. Studies in vapour pressure measurement, part Ill. An effusion manometer sensitive to 5×10^{-6} millimetres of mercury: vapour pressure of D. D. T. and other slightly volatile substances. Trans. Faraday Soc. **1947**, 43, 54–60. (84) Atkins D. H. F.; Eggleton, A. E. J. Studies of Atmospheric Wash-
- Out and Deposition of γ -BHC, Dieldrin and p,p'-DDT Using Radio-Labelled Pesticides; International Atomic Energy Agency: Vienna, 1971; pp 521–533. (85) Webster, G. R. B.; Fricoan, K. J.; Sarna, L. P.; Muir, D. C. G.
- Environmental fate modelling of chlorodioxins: Determination of physical constants. Chemosphere 1985, 14, 609-622
- (86) Bidleman, T. F. Estimation of Vapour Pressures for Nonpolar Organic Compounds by Capillary Gas Chromatography Anal. *Chem.* **1984**, *56*, 2490–2496. (87) Chiou, C. T.; Malcolm, R. L.; Brinton, T. I.; Kile, D. E. Water
- Solubility Enhancement of Some Organic Pollutants and Pesticides by Dissolved Humic and Fulvic Actids. Environ. Sci. Technoľ. **1986**, 20, 502–508.
- (88) Ellgehausen, H.; D'Hondt, C.; Fuerer, R. Reversed-phase chromatography as a general method for determining octan-1-ol/water partition coefficients. Pestic. Sci. 1981, 12, 219-227.
- (89) Biggar, J. W.; Riggs, R. L. Apparent solubility of organochlorine insecticides in water at various temperatures. Hilgardia 1974, 42
- (90) Biggar, J. W.; Dutt, G. R.; Riggs, R. L. Predicting and measuring Toxicol. **1967**, 2, 90–100.
- (91) Babers, F. H. The solubility of DDT in water determined radio-metrically. J. Am. Chem. Soc. 1955, 77, 4666.
 (92) Robeck, G. G.; Dostal, K. A.; Cohen, J. M.; Kreissl, J. Effectiveness
- of water treatment processes in pesticide removal. J.-Am. Water Works Assn. 1965, 181-199.
- (93)
- Gerstl, Z.; Mingelgrin, U. Sorption of organic substances by soils and sediments. J. Environ. Sci. Health B **1984**, 19, 297–312. Swann, R. L.; Laskowski, D. A.; McCall, P. J.; Kuy, K. V.; Dishburger, H. J. A rapid method for the estimation of the (94)environmental parameters octanol/water partition coefficient, soil sorption constant, water-to-air ratio, and water solubility. Residue
- Rev. 1983, 85, 17–28.
 (95) Fendinger, N. J.; Glotfelty, D. E.; Freeman, H. P. Comparison of Two Experimental Techniques for Determining Air/Water Henry's Law Constants. *Environ. Sci. Technol.* **1989**, 23, 1528–1531. (96) Rapaport, R. A.; Eisenreich, S. J. Chromatographic Determination
- of Octanol-Water Coefficients K_{OW} 's for 58 Polychlorinated Biphenyl Congeners. Environ. Sci. Technol. 1984, 18, 163-170.
- (97) Finizio, A.; Vighi, M.; Sandroni, D. Determination of n-octanol/ water partition coefficient $K_{\rm OW}$ of pesticide. Critical review and comparison of methods. *Chemosphere* **1997**, *34*, 131–161.
- (98) Sarna, L. P.; Hodge, P. E.; Webster, G. R. B. Octanol-water partition coefficients of chlorinated dioxins and dibenzofurans by reversed-phase HPLC using several C18 columns. Chemosphere 1984, 13, 975-983.
- (99)Westcott, J. W.; Simon, C. G.; Bidleman, T. F. Determination of Polychlorinated Biphenyl Vapor Pressures by Semimicro Gas Saturation Method. Environ. Sci. Technol. 1981, 15, 1375-1378.

- (100) Westcott, J. W.; Bidleman, T. F. Determination of polychlorinated biphenyl vapor pressures by capillary gas chromatography. J. Chromatogr. **1981**, 210, 331–336. Chiou, C. T.; Freed, V. H.; Schmedding, D. W.; Kohnert, R. L.
- (101)Partition Coefficient and Bioaccumulation of Selected Organic Chemicals. *Environ. Sci. Technol.* **1977**, *11*, 475–477. (102) Bidleman, T. F.; Billings, W. N.; Foreman, W. T. Vapor–Particle
- Partitioning of Semivolatile Organic Compounds: Estimates from Field Collections. Environ. Sci. Technol. 1986, 20, 1038-1043
- (103) Sanborn, J. R.; Metcalf, R. L.; Bruce, W. N.; Lu, P.-Y. The fate of chlorane and toxaphene in a terrestrial-aquatic model eco-
- system. Environ. Entomol. 1976, 5, 533–538. (104) Johnson-Logan, L. R.; Broshears, R. E.; Klaine, S. J. Partition Behavior and the Mobility of Chlordane in Groundwater. Envi-
- ron. Sci. Technol. 1992, 26, 2234–2239. (105) Simpson, C. D.; Wilcock, R. J.; Smith, T. J.; Wilkins, A. L.; Langdon, A. G. Determination of octanol-water partition coefficients for the major components of technical chlordane. Bull.
- Environ. Contam. Toxicol. 1995, 55, 149–153. (106) Park, K. S.; Bruce, W. N. The determination of the water solubility of aldrin, dieldrin, heptachlor, and heptachlor epoxide. J. Econ. Entomol. 1968, 61, 770-774.
- Noegrohati, S.; Hammers, W. E. Regression models for octanol-(107)water partition coefficients, and for bioconcentration in fish. Toxicol. Environ. Chem. 1992, 34, 155–173.
- (108) Grayson, B. T.; Forbraey, L. A. Determination of the vapour pressure of pesticides. Pestic. Sci. 1982, 13, 269-278.
- (109)Porter, P. In Analytical Methods for Pesticides, Plant Growth Regulators, and Food Additives; Zweig, G.; Ed.; Academic Press: New York, 1964; Vol. 2, pp 143–163. (110) Richardson, L. T.; Miller, D. M. Fungitoxicity of chlorinated
- hydrocarbon insecticides in relation to water solubility and vapor pressure. Can. J. Botany **1960**, 38, 163–168. Briggs, G. G. Theoretical and Experimental Relationships
- (111)between Soil Adsorption, Octanol-Water Partition Coefficients, Water Solubilities, Bioconcentration Factors, and the Parachor. J. Agric. Food. Chem. 1981, 29, 1055-1059
- (112) Spencer, W. F.; Cliath, M. M. Vapor Density of Dieldrin. Environ. Sci. Technol. 1969, 3, 670-674.
- Eye, J. D. Aqueous transport of dieldrin residues in soils. J.-Water Pollut. Control Fed. **1968**, 40, R316-R332. (113)
- (114) Bowman, B. T.; Sans, W. W. Effect of temperature on the water solubility of insecticides. J. Environ. Sci. Health B 1985, 20, 625 - 631
- (115) Slater, R. M.; Spedding, D. J. Transport of dieldrin between air and water. Arch. Environ. Contam. Toxicol. 1981, 10, 25-33. (116) Bowman, B. T.; Sans, W. W. Further water solubility determina-
- tions of insecticidal compounds. J. Environ. Sci. Health B 1983, 18, 221-227.
- (117) Fernandez-Gutierrez, A.; Martinez-Vidal, J. L.; Arrebola-Lieba-nas, F. J.; Gonzalez-Casado, A.; Vilchez, J. L. Determination of endosulfan and some pyrethroids in waters by micro liquid-liquid extraction and GC-MS. Fresenius' J. Anal. Chem. 1998, 360, 568 - 572
- (118) Rice, C. P.; Chernyak, S. M.; Hapeman, C. J.; Bilboulian, S. Airwater distribution of the endosulfan isomers. J. Environ. Qual. **1997**, 26, 1101-1106.
- (119) Hermens, J. L. M.; Leeuwangh, P. Joint toxicity of mixture of 8 and 24 chemicals to the guppy (poecilia reticulata). Ecotoxicol. Environ. Saf. 1982, 6, 302-310.
- (120) Cole, J. G.; Mackay, D. Correlating environmental partitioning properties of organic compounds: the three solubility approach. Environ. Toxicol. Chem. 2000, 19, 265-270.

Received for review August 25, 2004. Accepted December 1, 2004. We are grateful to the Long-range Research Initiative (LRI) of the European Chemical Industry Association (CEFIC) for funding.

JE049693F